变数据频率下海事模拟器训练性能评估的预测精度

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-08-11 DOI:10.1016/j.array.2025.100489
Ziaul Haque Munim , Fabian Kjeldsberg , Tae-Eun Kim , Morten Bustgaard
{"title":"变数据频率下海事模拟器训练性能评估的预测精度","authors":"Ziaul Haque Munim ,&nbsp;Fabian Kjeldsberg ,&nbsp;Tae-Eun Kim ,&nbsp;Morten Bustgaard","doi":"10.1016/j.array.2025.100489","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates how varying data sampling frequencies affect the classification accuracy of Machine Learning (ML) models when predicting student performance in maritime simulator training. ML-driven performance prediction is an essential part of Predictive Learning Analytics (PLA). If acceptable prediction accuracy can be achieved by using lower frequency data with larger time intervals between recorded data points, valuable resources in terms of data storage, handling, and computational cost, can be potentially saved. This study utilizes simulator log data from navigation students performing a <em>Williamson Turn</em> in both Ballast and Loaded ship conditions on a desktop simulator. Data frequencies ranging from 01 to 09 second intervals are examined. Results are evaluated by Area Under the Curve (AUC), Accuracy, Log Loss, Precision, Recall, and F1 Scores. The eXtreme Gradient Boosted Trees, variants of Keras Residual Neural Network, and Light Gradient Boosted Trees are trained on 87.5 % and tested on 12.5 % of the data. The best accuracy measurement scores are achieved on the 1-s frequency intervals in both ballast and loaded condition analysis. Further, the 1-s frequency intervals models are also the fastest and require less Random Access Memory (RAM). With reducing data frequency intervals, the model evaluation metrics deteriorate.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100489"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction accuracy in maritime simulator training performance assessment with varying data frequency\",\"authors\":\"Ziaul Haque Munim ,&nbsp;Fabian Kjeldsberg ,&nbsp;Tae-Eun Kim ,&nbsp;Morten Bustgaard\",\"doi\":\"10.1016/j.array.2025.100489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates how varying data sampling frequencies affect the classification accuracy of Machine Learning (ML) models when predicting student performance in maritime simulator training. ML-driven performance prediction is an essential part of Predictive Learning Analytics (PLA). If acceptable prediction accuracy can be achieved by using lower frequency data with larger time intervals between recorded data points, valuable resources in terms of data storage, handling, and computational cost, can be potentially saved. This study utilizes simulator log data from navigation students performing a <em>Williamson Turn</em> in both Ballast and Loaded ship conditions on a desktop simulator. Data frequencies ranging from 01 to 09 second intervals are examined. Results are evaluated by Area Under the Curve (AUC), Accuracy, Log Loss, Precision, Recall, and F1 Scores. The eXtreme Gradient Boosted Trees, variants of Keras Residual Neural Network, and Light Gradient Boosted Trees are trained on 87.5 % and tested on 12.5 % of the data. The best accuracy measurement scores are achieved on the 1-s frequency intervals in both ballast and loaded condition analysis. Further, the 1-s frequency intervals models are also the fastest and require less Random Access Memory (RAM). With reducing data frequency intervals, the model evaluation metrics deteriorate.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"27 \",\"pages\":\"Article 100489\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259000562500116X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562500116X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在预测海事模拟器训练中学生表现时,不同的数据采样频率如何影响机器学习(ML)模型的分类准确性。机器学习驱动的性能预测是预测学习分析(PLA)的重要组成部分。如果可以通过使用频率较低的数据和记录数据点之间较大的时间间隔来实现可接受的预测精度,则可以潜在地节省数据存储、处理和计算成本方面的宝贵资源。本研究利用航海学生在桌面模拟器上在压舱和载船条件下进行威廉姆森转弯的模拟器日志数据。数据频率范围从01到09秒的间隔进行检查。结果通过曲线下面积(AUC)、准确性、对数损失、精度、召回率和F1分数来评估。极端梯度增强树、Keras残差神经网络的变体和轻梯度增强树在87.5%的数据上进行训练,在12.5%的数据上进行测试。在镇流器和负载状态分析中,在1-s频率区间测量精度得分最高。此外,1-s频率间隔模型也是最快的,并且需要更少的随机存取存储器(RAM)。随着数据频率间隔的减小,模型评估指标会变差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction accuracy in maritime simulator training performance assessment with varying data frequency
This study investigates how varying data sampling frequencies affect the classification accuracy of Machine Learning (ML) models when predicting student performance in maritime simulator training. ML-driven performance prediction is an essential part of Predictive Learning Analytics (PLA). If acceptable prediction accuracy can be achieved by using lower frequency data with larger time intervals between recorded data points, valuable resources in terms of data storage, handling, and computational cost, can be potentially saved. This study utilizes simulator log data from navigation students performing a Williamson Turn in both Ballast and Loaded ship conditions on a desktop simulator. Data frequencies ranging from 01 to 09 second intervals are examined. Results are evaluated by Area Under the Curve (AUC), Accuracy, Log Loss, Precision, Recall, and F1 Scores. The eXtreme Gradient Boosted Trees, variants of Keras Residual Neural Network, and Light Gradient Boosted Trees are trained on 87.5 % and tested on 12.5 % of the data. The best accuracy measurement scores are achieved on the 1-s frequency intervals in both ballast and loaded condition analysis. Further, the 1-s frequency intervals models are also the fastest and require less Random Access Memory (RAM). With reducing data frequency intervals, the model evaluation metrics deteriorate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信