基于级联注意特征残差融合网络的非合作环境虹膜定位与分割

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shubin Guo , Ying Chen , Junkang Deng , Huiling Chen , Zhijie Chen , Changle He , Xiaodong Zhu
{"title":"基于级联注意特征残差融合网络的非合作环境虹膜定位与分割","authors":"Shubin Guo ,&nbsp;Ying Chen ,&nbsp;Junkang Deng ,&nbsp;Huiling Chen ,&nbsp;Zhijie Chen ,&nbsp;Changle He ,&nbsp;Xiaodong Zhu","doi":"10.1016/j.displa.2025.103192","DOIUrl":null,"url":null,"abstract":"<div><div>Iris localization and segmentation constitute mission-critical preprocessing stages in iris recognition systems, where their precision directly governs overall recognition accuracy. However, iris images captured under non-cooperative conditions are prone to boundary distortions caused by eyelash or eyelid occlusions and defocus blurring, while texture features suffer from weakened saliency due to uneven illumination or specular reflections, leading to reduced algorithm robustness. To address these challenges, this paper proposes a cascade attention feature residual fusion network (CA-RFNet) for multitask iris localization and segmentation in unconstrained scenarios. CA-RFNet adopts an encoder-decoder structure with skip connections. In the encoder stage, deep convolutional residual blocks hierarchically extract iris texture features. A cascade attention fusion module embedded in skip connections dynamically weights and adaptively integrates multi-receptive-field features while enabling cross-scale information complementarity. The decoder incorporates a boundary perception module with cross-layer feature interaction mechanisms to enhance fine-grained structural perception and cross-hierarchy semantic representation, thereby improving edge prediction accuracy. CA-RFNet modules work collaboratively to overcome adverse effects of unconstrained subject behaviors and complex environmental interference on algorithm robustness in non-cooperative scenarios. Extensive experiments on five non-cooperative iris datasets (CASIA-Iris-Distance, CASIA-Iris-Complex-Occlusion, CASIA-Iris-Complex-Off-angle, CASIA-Iris-M1, and CASIA-Iris-Africa) demonstrate that CA-RFNet achieves superior segmentation and localization performance on challenging samples with complex noise factors including occlusion, off-angle, illumination variation, specular reflection, dark iris, and dark skin.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103192"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascade attention feature residual fusion network for iris localization and segmentation in non-cooperative environments\",\"authors\":\"Shubin Guo ,&nbsp;Ying Chen ,&nbsp;Junkang Deng ,&nbsp;Huiling Chen ,&nbsp;Zhijie Chen ,&nbsp;Changle He ,&nbsp;Xiaodong Zhu\",\"doi\":\"10.1016/j.displa.2025.103192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iris localization and segmentation constitute mission-critical preprocessing stages in iris recognition systems, where their precision directly governs overall recognition accuracy. However, iris images captured under non-cooperative conditions are prone to boundary distortions caused by eyelash or eyelid occlusions and defocus blurring, while texture features suffer from weakened saliency due to uneven illumination or specular reflections, leading to reduced algorithm robustness. To address these challenges, this paper proposes a cascade attention feature residual fusion network (CA-RFNet) for multitask iris localization and segmentation in unconstrained scenarios. CA-RFNet adopts an encoder-decoder structure with skip connections. In the encoder stage, deep convolutional residual blocks hierarchically extract iris texture features. A cascade attention fusion module embedded in skip connections dynamically weights and adaptively integrates multi-receptive-field features while enabling cross-scale information complementarity. The decoder incorporates a boundary perception module with cross-layer feature interaction mechanisms to enhance fine-grained structural perception and cross-hierarchy semantic representation, thereby improving edge prediction accuracy. CA-RFNet modules work collaboratively to overcome adverse effects of unconstrained subject behaviors and complex environmental interference on algorithm robustness in non-cooperative scenarios. Extensive experiments on five non-cooperative iris datasets (CASIA-Iris-Distance, CASIA-Iris-Complex-Occlusion, CASIA-Iris-Complex-Off-angle, CASIA-Iris-M1, and CASIA-Iris-Africa) demonstrate that CA-RFNet achieves superior segmentation and localization performance on challenging samples with complex noise factors including occlusion, off-angle, illumination variation, specular reflection, dark iris, and dark skin.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"91 \",\"pages\":\"Article 103192\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014193822500229X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193822500229X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

虹膜定位和分割是虹膜识别系统中至关重要的预处理阶段,其精度直接决定了虹膜识别的整体精度。然而,在非合作条件下捕获的虹膜图像容易因睫毛或眼睑遮挡和离焦模糊而产生边界扭曲,而纹理特征由于光照不均匀或镜面反射而显着性减弱,导致算法鲁棒性降低。为了解决这些问题,本文提出了一种用于无约束场景下多任务虹膜定位和分割的级联注意特征残差融合网络(CA-RFNet)。CA-RFNet采用跳线连接的编码器-解码器结构。在编码器阶段,深度卷积残差块分层提取虹膜纹理特征。在跳跃连接中嵌入级联注意力融合模块,该模块动态加权并自适应集成多接受场特征,同时实现跨尺度信息互补。该解码器采用具有跨层特征交互机制的边界感知模块,增强了细粒度结构感知和跨层次语义表示,从而提高了边缘预测精度。CA-RFNet模块协同工作,克服非合作场景下无约束主体行为和复杂环境干扰对算法鲁棒性的不利影响。在5个非合作虹膜数据集(CASIA-Iris-Distance、CASIA-Iris-Complex-Occlusion、CASIA-Iris-Complex-Off-angle、CASIA-Iris-M1和CASIA-Iris-Africa)上进行的大量实验表明,CA-RFNet在具有遮挡、偏离角度、光照变化、镜面反射、深色虹膜和深色皮肤等复杂噪声因素的挑战性样本上取得了优异的分割和定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cascade attention feature residual fusion network for iris localization and segmentation in non-cooperative environments
Iris localization and segmentation constitute mission-critical preprocessing stages in iris recognition systems, where their precision directly governs overall recognition accuracy. However, iris images captured under non-cooperative conditions are prone to boundary distortions caused by eyelash or eyelid occlusions and defocus blurring, while texture features suffer from weakened saliency due to uneven illumination or specular reflections, leading to reduced algorithm robustness. To address these challenges, this paper proposes a cascade attention feature residual fusion network (CA-RFNet) for multitask iris localization and segmentation in unconstrained scenarios. CA-RFNet adopts an encoder-decoder structure with skip connections. In the encoder stage, deep convolutional residual blocks hierarchically extract iris texture features. A cascade attention fusion module embedded in skip connections dynamically weights and adaptively integrates multi-receptive-field features while enabling cross-scale information complementarity. The decoder incorporates a boundary perception module with cross-layer feature interaction mechanisms to enhance fine-grained structural perception and cross-hierarchy semantic representation, thereby improving edge prediction accuracy. CA-RFNet modules work collaboratively to overcome adverse effects of unconstrained subject behaviors and complex environmental interference on algorithm robustness in non-cooperative scenarios. Extensive experiments on five non-cooperative iris datasets (CASIA-Iris-Distance, CASIA-Iris-Complex-Occlusion, CASIA-Iris-Complex-Off-angle, CASIA-Iris-M1, and CASIA-Iris-Africa) demonstrate that CA-RFNet achieves superior segmentation and localization performance on challenging samples with complex noise factors including occlusion, off-angle, illumination variation, specular reflection, dark iris, and dark skin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信