Tony Yeung , Yi Zhang , Qianghua Zhou , Richard Burack
{"title":"邻域聚类分析定义肿瘤浸润淋巴细胞评价的上皮-基质界面","authors":"Tony Yeung , Yi Zhang , Qianghua Zhou , Richard Burack","doi":"10.1016/j.jpi.2025.100465","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial–stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies. Innovative spatial analysis techniques have emerged that can directly address challenges associated with quantification of lymphocytes in specialized regions like the interface. In this study, we apply supervised neighborhood clustering analysis (via an open-source application CytoMAP) to assess the spatial distribution of CD8+ T cells, CD8+ TIM3+ (T cell immunoglobulin and mucin-domain containing-3) exhausted T cells, and TIM3+ CD8- macrophages on a gynecological tumor microarray. Neighborhood clustering analysis is adept at objectively mapping the epithelial–stromal interface alongside the epithelial and stromal region of each tumor under a three-compartment model. When tumors are partitioned by the conventional two-compartment model (epithelial and stromal region only), the highest density of total CD8+ T cells is found in the stromal region in a slight majority of tumors. In contrast, the interface region surpasses both the epithelial and stromal region in holding the highest density of CD8+ T cells when this unique region is incorporated into the three-compartment model. Further subset analysis shows higher proportion of CD8+ TIM3+ exhausted T cells within the interface and epithelial region, as compared to CD8+ TIM3- T cells which span from the stroma to the interface. These results highlight the utility of implementing quantitative spatial technique and immune subset analysis in the assessment of tumor infiltrating lymphocytes, and underscore the potential significance of the under-reported tumor epithelial–stromal interface.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100465"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighborhood clustering analysis to define epithelial–stromal interface for tumor infiltrating lymphocyte evaluation\",\"authors\":\"Tony Yeung , Yi Zhang , Qianghua Zhou , Richard Burack\",\"doi\":\"10.1016/j.jpi.2025.100465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial–stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies. Innovative spatial analysis techniques have emerged that can directly address challenges associated with quantification of lymphocytes in specialized regions like the interface. In this study, we apply supervised neighborhood clustering analysis (via an open-source application CytoMAP) to assess the spatial distribution of CD8+ T cells, CD8+ TIM3+ (T cell immunoglobulin and mucin-domain containing-3) exhausted T cells, and TIM3+ CD8- macrophages on a gynecological tumor microarray. Neighborhood clustering analysis is adept at objectively mapping the epithelial–stromal interface alongside the epithelial and stromal region of each tumor under a three-compartment model. When tumors are partitioned by the conventional two-compartment model (epithelial and stromal region only), the highest density of total CD8+ T cells is found in the stromal region in a slight majority of tumors. In contrast, the interface region surpasses both the epithelial and stromal region in holding the highest density of CD8+ T cells when this unique region is incorporated into the three-compartment model. Further subset analysis shows higher proportion of CD8+ TIM3+ exhausted T cells within the interface and epithelial region, as compared to CD8+ TIM3- T cells which span from the stroma to the interface. These results highlight the utility of implementing quantitative spatial technique and immune subset analysis in the assessment of tumor infiltrating lymphocytes, and underscore the potential significance of the under-reported tumor epithelial–stromal interface.</div></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"19 \",\"pages\":\"Article 100465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353925000513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Neighborhood clustering analysis to define epithelial–stromal interface for tumor infiltrating lymphocyte evaluation
Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial–stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies. Innovative spatial analysis techniques have emerged that can directly address challenges associated with quantification of lymphocytes in specialized regions like the interface. In this study, we apply supervised neighborhood clustering analysis (via an open-source application CytoMAP) to assess the spatial distribution of CD8+ T cells, CD8+ TIM3+ (T cell immunoglobulin and mucin-domain containing-3) exhausted T cells, and TIM3+ CD8- macrophages on a gynecological tumor microarray. Neighborhood clustering analysis is adept at objectively mapping the epithelial–stromal interface alongside the epithelial and stromal region of each tumor under a three-compartment model. When tumors are partitioned by the conventional two-compartment model (epithelial and stromal region only), the highest density of total CD8+ T cells is found in the stromal region in a slight majority of tumors. In contrast, the interface region surpasses both the epithelial and stromal region in holding the highest density of CD8+ T cells when this unique region is incorporated into the three-compartment model. Further subset analysis shows higher proportion of CD8+ TIM3+ exhausted T cells within the interface and epithelial region, as compared to CD8+ TIM3- T cells which span from the stroma to the interface. These results highlight the utility of implementing quantitative spatial technique and immune subset analysis in the assessment of tumor infiltrating lymphocytes, and underscore the potential significance of the under-reported tumor epithelial–stromal interface.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.