碳间质Fe40Mn40Co10Cr10高熵合金动态拉伸行为及变形机理

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Liangbin Chen , Xin Li , Ke Tang , Yuhang Shi , Yaohui Li , Yaoju Li , Ran Wei , Yanpu Chao , Feng Jiang
{"title":"碳间质Fe40Mn40Co10Cr10高熵合金动态拉伸行为及变形机理","authors":"Liangbin Chen ,&nbsp;Xin Li ,&nbsp;Ke Tang ,&nbsp;Yuhang Shi ,&nbsp;Yaohui Li ,&nbsp;Yaoju Li ,&nbsp;Ran Wei ,&nbsp;Yanpu Chao ,&nbsp;Feng Jiang","doi":"10.1016/j.intermet.2025.108974","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon interstitial solid solution strengthening is an effective strategy to simultaneously enhance the strength and ductility of face-centered cubic high entropy alloys (HEAs). However, majority of studies have confined to quasi-static condition. In this study, the dynamic and quasi-static tensile mechanical behaviors of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> HEAs were investigated at room temperature. The results show that high strain rate can significantly improve the strength of both Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> HEAs. The yield strength of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> increases from 245 MPa and 437 MPa at strain rate of 1 × 10<sup>−3</sup> s<sup>−1</sup> to 530 MPa and 815 MPa at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>. Moreover, the ultimate tensile strength of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> reaches to 1073 MPa and 1413 MPa at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>, respectively. Whereas, the ductility of both HEAs declines remarkedly, with uniform elongation decreasing from 46.2 % and 67.4 % at strain rate of 1 × 10<sup>−3</sup> s<sup>−1</sup> to 7.9 % and 25.2 % at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>. The thermally activated dislocation motion and the phonon drag effects jointly contribute to the striking increment of yield strength with increasing strain rate. The temperature rise during dynamic deformation gives rise to stacking fault energy increasing, which inhibits the deformation twinning, resulting in the reduction of strain hardening rate and thus the reduced ductility. In particular, with the assistance of C solid solution, (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> exhibits enhanced twinning formation capability and superior resistance to shear bands formation than Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>, which enables a better combination of strength and ductility upon dynamic loads. These findings provide deep insights into dynamic deformation behavior of carbon interstitial face-centered cubic HEAs.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"186 ","pages":"Article 108974"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic tensile behavior and deformation mechanism of carbon interstitial Fe40Mn40Co10Cr10 high entropy alloy\",\"authors\":\"Liangbin Chen ,&nbsp;Xin Li ,&nbsp;Ke Tang ,&nbsp;Yuhang Shi ,&nbsp;Yaohui Li ,&nbsp;Yaoju Li ,&nbsp;Ran Wei ,&nbsp;Yanpu Chao ,&nbsp;Feng Jiang\",\"doi\":\"10.1016/j.intermet.2025.108974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon interstitial solid solution strengthening is an effective strategy to simultaneously enhance the strength and ductility of face-centered cubic high entropy alloys (HEAs). However, majority of studies have confined to quasi-static condition. In this study, the dynamic and quasi-static tensile mechanical behaviors of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> HEAs were investigated at room temperature. The results show that high strain rate can significantly improve the strength of both Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> HEAs. The yield strength of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> increases from 245 MPa and 437 MPa at strain rate of 1 × 10<sup>−3</sup> s<sup>−1</sup> to 530 MPa and 815 MPa at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>. Moreover, the ultimate tensile strength of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> and (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> reaches to 1073 MPa and 1413 MPa at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>, respectively. Whereas, the ductility of both HEAs declines remarkedly, with uniform elongation decreasing from 46.2 % and 67.4 % at strain rate of 1 × 10<sup>−3</sup> s<sup>−1</sup> to 7.9 % and 25.2 % at strain rate of 8 × 10<sup>3</sup> s<sup>−1</sup>. The thermally activated dislocation motion and the phonon drag effects jointly contribute to the striking increment of yield strength with increasing strain rate. The temperature rise during dynamic deformation gives rise to stacking fault energy increasing, which inhibits the deformation twinning, resulting in the reduction of strain hardening rate and thus the reduced ductility. In particular, with the assistance of C solid solution, (Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>)<sub>96.7</sub>C<sub>3.3</sub> exhibits enhanced twinning formation capability and superior resistance to shear bands formation than Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>, which enables a better combination of strength and ductility upon dynamic loads. These findings provide deep insights into dynamic deformation behavior of carbon interstitial face-centered cubic HEAs.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"186 \",\"pages\":\"Article 108974\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525003395\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003395","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳间隙固溶强化是同时提高面心立方高熵合金强度和塑性的有效方法。然而,大多数研究都局限于准静态条件。本文研究了Fe40Mn40Co10Cr10和(Fe40Mn40Co10Cr10)96.7C3.3 HEAs在室温下的动态和准静态拉伸力学行为。结果表明,高应变速率可以显著提高Fe40Mn40Co10Cr10和(Fe40Mn40Co10Cr10)96.7C3.3 HEAs的强度。Fe40Mn40Co10Cr10和(Fe40Mn40Co10Cr10)96.7C3.3的屈服强度分别从应变速率为1 × 10−3 s−1时的245 MPa和437 MPa提高到应变速率为8 × 103 s−1时的530 MPa和815 MPa。在应变速率为8 × 103 s−1时,Fe40Mn40Co10Cr10和(Fe40Mn40Co10Cr10)96.7C3.3的极限拉伸强度分别达到1073 MPa和1413 MPa。然而,两种HEAs的延展性均明显下降,均匀伸长率从应变率为1 × 10−3 s−1时的46.2%和67.4%下降到应变率为8 × 103 s−1时的7.9%和25.2%。热激活的位错运动和声子拖拽效应共同导致屈服强度随应变速率的增加而显著增加。动态变形过程中温度升高导致层错能增加,抑制变形孪晶,导致应变硬化速率降低,塑性降低。特别是在C固溶体的作用下,(Fe40Mn40Co10Cr10)96.7C3.3比Fe40Mn40Co10Cr10具有更强的孪晶形成能力和更强的抗剪切带形成能力,在动载荷作用下具有更好的强度和塑性结合。这些发现为研究碳间隙面心立方HEAs的动态变形行为提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic tensile behavior and deformation mechanism of carbon interstitial Fe40Mn40Co10Cr10 high entropy alloy
Carbon interstitial solid solution strengthening is an effective strategy to simultaneously enhance the strength and ductility of face-centered cubic high entropy alloys (HEAs). However, majority of studies have confined to quasi-static condition. In this study, the dynamic and quasi-static tensile mechanical behaviors of Fe40Mn40Co10Cr10 and (Fe40Mn40Co10Cr10)96.7C3.3 HEAs were investigated at room temperature. The results show that high strain rate can significantly improve the strength of both Fe40Mn40Co10Cr10 and (Fe40Mn40Co10Cr10)96.7C3.3 HEAs. The yield strength of Fe40Mn40Co10Cr10 and (Fe40Mn40Co10Cr10)96.7C3.3 increases from 245 MPa and 437 MPa at strain rate of 1 × 10−3 s−1 to 530 MPa and 815 MPa at strain rate of 8 × 103 s−1. Moreover, the ultimate tensile strength of Fe40Mn40Co10Cr10 and (Fe40Mn40Co10Cr10)96.7C3.3 reaches to 1073 MPa and 1413 MPa at strain rate of 8 × 103 s−1, respectively. Whereas, the ductility of both HEAs declines remarkedly, with uniform elongation decreasing from 46.2 % and 67.4 % at strain rate of 1 × 10−3 s−1 to 7.9 % and 25.2 % at strain rate of 8 × 103 s−1. The thermally activated dislocation motion and the phonon drag effects jointly contribute to the striking increment of yield strength with increasing strain rate. The temperature rise during dynamic deformation gives rise to stacking fault energy increasing, which inhibits the deformation twinning, resulting in the reduction of strain hardening rate and thus the reduced ductility. In particular, with the assistance of C solid solution, (Fe40Mn40Co10Cr10)96.7C3.3 exhibits enhanced twinning formation capability and superior resistance to shear bands formation than Fe40Mn40Co10Cr10, which enables a better combination of strength and ductility upon dynamic loads. These findings provide deep insights into dynamic deformation behavior of carbon interstitial face-centered cubic HEAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信