非坍缩测量的叠加检测和QMA

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-28 DOI:10.22331/q-2025-08-28-1839
Roozbeh Bassirian, Kunal Marwaha
{"title":"非坍缩测量的叠加检测和QMA","authors":"Roozbeh Bassirian, Kunal Marwaha","doi":"10.22331/q-2025-08-28-1839","DOIUrl":null,"url":null,"abstract":"We prove that $\\sf{QMA}$ where the verifier may also make a single $non-collapsing$ measurement [7] is equal to $\\sf{NEXP}$, resolving an open question of Aaronson [5]. We show this is a corollary to a modified proof of $\\sf{QMA+ = NEXP}$ [15]. At the core of many results inspired by Blier and Tapp [16] is an unphysical property testing problem deciding whether a quantum state is close to an element of a fixed basis.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"31 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superposition detection and QMA with non-collapsing measurements\",\"authors\":\"Roozbeh Bassirian, Kunal Marwaha\",\"doi\":\"10.22331/q-2025-08-28-1839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $\\\\sf{QMA}$ where the verifier may also make a single $non-collapsing$ measurement [7] is equal to $\\\\sf{NEXP}$, resolving an open question of Aaronson [5]. We show this is a corollary to a modified proof of $\\\\sf{QMA+ = NEXP}$ [15]. At the core of many results inspired by Blier and Tapp [16] is an unphysical property testing problem deciding whether a quantum state is close to an element of a fixed basis.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-28-1839\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-28-1839","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了$\sf{QMA}$,其中验证者也可以使单个$非坍缩$测量[7]等于$\sf{NEXP}$,解决了Aaronson[5]的一个未决问题。我们证明这是$\sf{QMA+ = NEXP}$[15]的修改证明的必然结果。受Blier和Tapp[16]启发的许多结果的核心是一个非物理性质测试问题,决定量子态是否接近固定基的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superposition detection and QMA with non-collapsing measurements
We prove that $\sf{QMA}$ where the verifier may also make a single $non-collapsing$ measurement [7] is equal to $\sf{NEXP}$, resolving an open question of Aaronson [5]. We show this is a corollary to a modified proof of $\sf{QMA+ = NEXP}$ [15]. At the core of many results inspired by Blier and Tapp [16] is an unphysical property testing problem deciding whether a quantum state is close to an element of a fixed basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信