单步反应与多步计划间的反合成串扰

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junseok Choe, Hajung Kim, Yan Ting Chok, Mogan Gim, Jaewoo Kang
{"title":"单步反应与多步计划间的反合成串扰","authors":"Junseok Choe,&nbsp;Hajung Kim,&nbsp;Yan Ting Chok,&nbsp;Mogan Gim,&nbsp;Jaewoo Kang","doi":"10.1186/s13321-025-01088-z","DOIUrl":null,"url":null,"abstract":"<div><p>Retrosynthesis—the process of deconstructing complex molecules into simpler, more accessible precursors—is a cornerstone of drug discovery and material design. While machine learning has improved single-step retrosynthesis prediction, generating complete multi-step retrosynthetic routes remains challenging. In this study, we explore the integration of single-step retrosynthesis models with various planning algorithms to improve multi-step retrosynthetic route generation. We expand the exploration space beyond previously limited settings by incorporating combinations of planning algorithms and single-step retrosynthesis models and diverse datasets, enabling a more comprehensive assessment of retrosynthetic strategies. We evaluated synthetic routes based on both solvability, the ability to generate a complete route, and route feasibility, which reflects their practical executability in the laboratory. Our findings show that the model combination with the highest solvability does not always produce the most feasible routes, underscoring the need for more nuanced evaluation. Through a systematic analysis of combinations of planning algorithms and single-step retrosynthesis models, their performance across different datasets, and various practical metrics, our study provides a more comprehensive evaluation of retrosynthetic planning strategies. These insights contribute to a better understanding of computational retrosynthesis and its alignment with real-world applicability.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01088-z","citationCount":"0","resultStr":"{\"title\":\"Retrosynthetic crosstalk between single-step reaction and multi-step planning\",\"authors\":\"Junseok Choe,&nbsp;Hajung Kim,&nbsp;Yan Ting Chok,&nbsp;Mogan Gim,&nbsp;Jaewoo Kang\",\"doi\":\"10.1186/s13321-025-01088-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Retrosynthesis—the process of deconstructing complex molecules into simpler, more accessible precursors—is a cornerstone of drug discovery and material design. While machine learning has improved single-step retrosynthesis prediction, generating complete multi-step retrosynthetic routes remains challenging. In this study, we explore the integration of single-step retrosynthesis models with various planning algorithms to improve multi-step retrosynthetic route generation. We expand the exploration space beyond previously limited settings by incorporating combinations of planning algorithms and single-step retrosynthesis models and diverse datasets, enabling a more comprehensive assessment of retrosynthetic strategies. We evaluated synthetic routes based on both solvability, the ability to generate a complete route, and route feasibility, which reflects their practical executability in the laboratory. Our findings show that the model combination with the highest solvability does not always produce the most feasible routes, underscoring the need for more nuanced evaluation. Through a systematic analysis of combinations of planning algorithms and single-step retrosynthesis models, their performance across different datasets, and various practical metrics, our study provides a more comprehensive evaluation of retrosynthetic planning strategies. These insights contribute to a better understanding of computational retrosynthesis and its alignment with real-world applicability.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01088-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01088-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01088-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

逆转录合成——将复杂分子分解成更简单、更容易获取的前体的过程——是药物发现和材料设计的基石。虽然机器学习改进了单步反合成预测,但生成完整的多步反合成路线仍然具有挑战性。在本研究中,我们探索了单步反合成模型与各种规划算法的集成,以改进多步反合成路线生成。我们通过结合规划算法、单步反合成模型和多种数据集,扩展了以前有限的探索空间,从而能够更全面地评估反合成策略。我们根据可解性、生成完整路线的能力和路线可行性来评估合成路线,这反映了它们在实验室中的实际可执行性。我们的研究结果表明,具有最高可解性的模型组合并不总是产生最可行的路线,强调需要更细致的评估。通过系统分析规划算法和单步反合成模型的组合,以及它们在不同数据集上的性能,以及各种实际指标,我们的研究为反合成规划策略提供了更全面的评估。这些见解有助于更好地理解计算反合成及其与现实世界适用性的一致性。我们为反合成任务提供了扩展的研究成果。我们还提出了实际世界中反合成路线有效性的可行性概念及其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrosynthetic crosstalk between single-step reaction and multi-step planning

Retrosynthesis—the process of deconstructing complex molecules into simpler, more accessible precursors—is a cornerstone of drug discovery and material design. While machine learning has improved single-step retrosynthesis prediction, generating complete multi-step retrosynthetic routes remains challenging. In this study, we explore the integration of single-step retrosynthesis models with various planning algorithms to improve multi-step retrosynthetic route generation. We expand the exploration space beyond previously limited settings by incorporating combinations of planning algorithms and single-step retrosynthesis models and diverse datasets, enabling a more comprehensive assessment of retrosynthetic strategies. We evaluated synthetic routes based on both solvability, the ability to generate a complete route, and route feasibility, which reflects their practical executability in the laboratory. Our findings show that the model combination with the highest solvability does not always produce the most feasible routes, underscoring the need for more nuanced evaluation. Through a systematic analysis of combinations of planning algorithms and single-step retrosynthesis models, their performance across different datasets, and various practical metrics, our study provides a more comprehensive evaluation of retrosynthetic planning strategies. These insights contribute to a better understanding of computational retrosynthesis and its alignment with real-world applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信