Maximilian Fleck, Samir Darouich, Marcelle B. M. Spera, Niels Hansen
{"title":"对“推进材料性能预测:使用物理信息的粘度机器学习模型”的评论","authors":"Maximilian Fleck, Samir Darouich, Marcelle B. M. Spera, Niels Hansen","doi":"10.1186/s13321-025-01070-9","DOIUrl":null,"url":null,"abstract":"<div><p>When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. (“<i>Advancing material property prediction: using physics-informed machine learning models for viscosity</i>”) descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure–property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring’s rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01070-9","citationCount":"0","resultStr":"{\"title\":\"Comment on “Advancing material property prediction: using physics-informed machine learning models for viscosity”\",\"authors\":\"Maximilian Fleck, Samir Darouich, Marcelle B. M. Spera, Niels Hansen\",\"doi\":\"10.1186/s13321-025-01070-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. (“<i>Advancing material property prediction: using physics-informed machine learning models for viscosity</i>”) descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure–property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring’s rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01070-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01070-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01070-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comment on “Advancing material property prediction: using physics-informed machine learning models for viscosity”
When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. (“Advancing material property prediction: using physics-informed machine learning models for viscosity”) descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure–property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring’s rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.