Sam J. McCright, Olivia Harding, Julia Chini, Nicole DeMarco, Li-Yin Hung, Christopher F. Pastore, Wenyun Lu, Joshua Rabinowitz, Jorge Henao-Mejia, De’Broski R. Herbert, Lisa R. Young, David A. Hill
{"title":"饮食饱和脂肪酸促进小鼠和人类肺髓细胞炎性体活化和il -1β介导的炎症","authors":"Sam J. McCright, Olivia Harding, Julia Chini, Nicole DeMarco, Li-Yin Hung, Christopher F. Pastore, Wenyun Lu, Joshua Rabinowitz, Jorge Henao-Mejia, De’Broski R. Herbert, Lisa R. Young, David A. Hill","doi":"10.1126/scitranslmed.adp5653","DOIUrl":null,"url":null,"abstract":"<div >Resident tissue macrophages and monocytes (RTMs) integrate local and systemic signals to coordinate immune cell function at homeostasis and in response to inflammatory stimuli. Obesity-associated metabolic dysfunction drives the development of RTM populations that contribute to disease states in multiple tissues. However, the contribution of specific dietary components to innate immune cell activation and function, as opposed to the direct effects of obesity, is largely unknown. Here, we studied the mechanisms by which high-fat (HF) diets shape lung RTM phenotype and function at steady state and influence responses to inflammatory insults. We found that, during HF diet feeding, lung RTMs accumulate saturated long-chain fatty acids, specifically stearic acid (SA), and demonstrate features of NLRP3 inflammasome priming and activation. In vivo, increased dietary SA was sufficient to cause neutrophil-predominant lung inflammation in the steady state and exacerbate a model of innate airway inflammation, whereas increased dietary oleic acid, the monounsaturated counterpart of SA, was sufficient to reduce inflammasome activation in the steady state and attenuate airway inflammation. Depletion of interleukin-1β (IL-1β) or pharmacologic inhibition of the endonuclease inositol requiring enzyme 1α (IRE1α) protected against SA-induced exacerbated lung inflammation. Last, we identified a population of lung monocytes with hallmarks of HF diet–induced RTM activation that were present in samples from obese humans with asthma. Together, these results identify a class of dietary lipids that regulate lung RTM phenotype and function in the steady state and modulate the severity of inflammation in the lung.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 813","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary saturated fatty acids promote lung myeloid cell inflammasome activation and IL-1β–mediated inflammation in mice and humans\",\"authors\":\"Sam J. McCright, Olivia Harding, Julia Chini, Nicole DeMarco, Li-Yin Hung, Christopher F. Pastore, Wenyun Lu, Joshua Rabinowitz, Jorge Henao-Mejia, De’Broski R. Herbert, Lisa R. Young, David A. Hill\",\"doi\":\"10.1126/scitranslmed.adp5653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Resident tissue macrophages and monocytes (RTMs) integrate local and systemic signals to coordinate immune cell function at homeostasis and in response to inflammatory stimuli. Obesity-associated metabolic dysfunction drives the development of RTM populations that contribute to disease states in multiple tissues. However, the contribution of specific dietary components to innate immune cell activation and function, as opposed to the direct effects of obesity, is largely unknown. Here, we studied the mechanisms by which high-fat (HF) diets shape lung RTM phenotype and function at steady state and influence responses to inflammatory insults. We found that, during HF diet feeding, lung RTMs accumulate saturated long-chain fatty acids, specifically stearic acid (SA), and demonstrate features of NLRP3 inflammasome priming and activation. In vivo, increased dietary SA was sufficient to cause neutrophil-predominant lung inflammation in the steady state and exacerbate a model of innate airway inflammation, whereas increased dietary oleic acid, the monounsaturated counterpart of SA, was sufficient to reduce inflammasome activation in the steady state and attenuate airway inflammation. Depletion of interleukin-1β (IL-1β) or pharmacologic inhibition of the endonuclease inositol requiring enzyme 1α (IRE1α) protected against SA-induced exacerbated lung inflammation. Last, we identified a population of lung monocytes with hallmarks of HF diet–induced RTM activation that were present in samples from obese humans with asthma. Together, these results identify a class of dietary lipids that regulate lung RTM phenotype and function in the steady state and modulate the severity of inflammation in the lung.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"17 813\",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adp5653\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adp5653","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dietary saturated fatty acids promote lung myeloid cell inflammasome activation and IL-1β–mediated inflammation in mice and humans
Resident tissue macrophages and monocytes (RTMs) integrate local and systemic signals to coordinate immune cell function at homeostasis and in response to inflammatory stimuli. Obesity-associated metabolic dysfunction drives the development of RTM populations that contribute to disease states in multiple tissues. However, the contribution of specific dietary components to innate immune cell activation and function, as opposed to the direct effects of obesity, is largely unknown. Here, we studied the mechanisms by which high-fat (HF) diets shape lung RTM phenotype and function at steady state and influence responses to inflammatory insults. We found that, during HF diet feeding, lung RTMs accumulate saturated long-chain fatty acids, specifically stearic acid (SA), and demonstrate features of NLRP3 inflammasome priming and activation. In vivo, increased dietary SA was sufficient to cause neutrophil-predominant lung inflammation in the steady state and exacerbate a model of innate airway inflammation, whereas increased dietary oleic acid, the monounsaturated counterpart of SA, was sufficient to reduce inflammasome activation in the steady state and attenuate airway inflammation. Depletion of interleukin-1β (IL-1β) or pharmacologic inhibition of the endonuclease inositol requiring enzyme 1α (IRE1α) protected against SA-induced exacerbated lung inflammation. Last, we identified a population of lung monocytes with hallmarks of HF diet–induced RTM activation that were present in samples from obese humans with asthma. Together, these results identify a class of dietary lipids that regulate lung RTM phenotype and function in the steady state and modulate the severity of inflammation in the lung.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.