PCNN-BCMO:一种新的基于深度学习的任务调度方法,用于提高云数据中心的能源效率

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
Rajagopal Senthilkumar, Sundhararajan Gokulraj, Selvam Sadesh, Krishnasamy Narayanan
{"title":"PCNN-BCMO:一种新的基于深度学习的任务调度方法,用于提高云数据中心的能源效率","authors":"Rajagopal Senthilkumar,&nbsp;Sundhararajan Gokulraj,&nbsp;Selvam Sadesh,&nbsp;Krishnasamy Narayanan","doi":"10.1002/ett.70223","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rapid development of cloud computing and data centers has intensified the need for efficient task scheduling to enhance energy efficiency and resource utilization. This study presents a novel task scheduling approach leveraging a part-based convolutional neural network (PCNN) optimized with balancing composite motion optimization (BCMO) to address these challenges. Historical data from cloud data centers is pre-processed utilizing guided box filtering (GBF) to eliminate noise, allowing the PCNN to accurately predict and schedule tasks. The BCMO optimization method fine-tunes the PCNN's weight parameters, ensuring effective scheduling while minimizing power consumption. Implemented in JAVA, the proposed method achieves remarkable accuracies of 99.67% and 99.78% on NASA and Saskatchewan HTTP traces benchmark datasets, respectively, outperforming existing models.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCNN-BCMO: A Novel Deep Learning Espoused Task Scheduling Approach for Enhancing Energy Efficiency of Cloud Data Centers\",\"authors\":\"Rajagopal Senthilkumar,&nbsp;Sundhararajan Gokulraj,&nbsp;Selvam Sadesh,&nbsp;Krishnasamy Narayanan\",\"doi\":\"10.1002/ett.70223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The rapid development of cloud computing and data centers has intensified the need for efficient task scheduling to enhance energy efficiency and resource utilization. This study presents a novel task scheduling approach leveraging a part-based convolutional neural network (PCNN) optimized with balancing composite motion optimization (BCMO) to address these challenges. Historical data from cloud data centers is pre-processed utilizing guided box filtering (GBF) to eliminate noise, allowing the PCNN to accurately predict and schedule tasks. The BCMO optimization method fine-tunes the PCNN's weight parameters, ensuring effective scheduling while minimizing power consumption. Implemented in JAVA, the proposed method achieves remarkable accuracies of 99.67% and 99.78% on NASA and Saskatchewan HTTP traces benchmark datasets, respectively, outperforming existing models.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"36 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70223\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70223","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

云计算和数据中心的快速发展加剧了对高效任务调度的需求,以提高能源效率和资源利用率。本研究提出了一种新的任务调度方法,利用平衡复合运动优化(BCMO)优化的基于部分的卷积神经网络(PCNN)来解决这些挑战。来自云数据中心的历史数据使用引导框滤波(GBF)进行预处理,以消除噪声,使PCNN能够准确预测和调度任务。BCMO优化方法对PCNN的权重参数进行微调,在保证有效调度的同时最小化功耗。该方法在JAVA中实现,在NASA和Saskatchewan HTTP跟踪基准数据集上分别达到99.67%和99.78%的准确率,优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PCNN-BCMO: A Novel Deep Learning Espoused Task Scheduling Approach for Enhancing Energy Efficiency of Cloud Data Centers

PCNN-BCMO: A Novel Deep Learning Espoused Task Scheduling Approach for Enhancing Energy Efficiency of Cloud Data Centers

The rapid development of cloud computing and data centers has intensified the need for efficient task scheduling to enhance energy efficiency and resource utilization. This study presents a novel task scheduling approach leveraging a part-based convolutional neural network (PCNN) optimized with balancing composite motion optimization (BCMO) to address these challenges. Historical data from cloud data centers is pre-processed utilizing guided box filtering (GBF) to eliminate noise, allowing the PCNN to accurately predict and schedule tasks. The BCMO optimization method fine-tunes the PCNN's weight parameters, ensuring effective scheduling while minimizing power consumption. Implemented in JAVA, the proposed method achieves remarkable accuracies of 99.67% and 99.78% on NASA and Saskatchewan HTTP traces benchmark datasets, respectively, outperforming existing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信