{"title":"CAAFE-ResNet:一个具有通道关注增强特征提取的ResNet用于直肠癌预后评估","authors":"Qing Lu, Jiaojiao Zhang, Qianwen Xue, Jinping Ma, Sheng Fang, Hui Ma, Yulin Zhang, Longbo Zheng","doi":"10.1049/syb2.70030","DOIUrl":null,"url":null,"abstract":"<p>Magnetic resonance imaging (MRI) has a pivotal role in both pretreatment staging and post-treatment evaluation of rectal cancer. This study presents an innovative deep learning model, CAAFE-ResNet18*, based on the residual neural network ResNet18*. The model features an ingeniously designed feature extraction and complementation module (i.e., CAAFE), which leverages a multiscale dilated convolution parallel architecture combined with a channel attention mechanism (CAM) to achieve multilevel information fusion, spatial feature enhancement and channel feature optimisation. This enables in-depth exploration and augmentation of multilevel downsampled features, significantly improving feature representation capability and overall performance. Testing on rectal cancer MRI data demonstrates that the CAAFE-ResNet18* model significantly outperforms convolutional neural network (CNN) backbone networks and recent state-of-the-art (SOTA) models. This result indicates that the CAAFE model, by complementing and extracting MR images of patients with locally advanced rectal cancer (LARC) features at different scales from ResNet18*, may help to identify patients who will show complete response (CR) at the end of treatment and those who will not respond to therapy (NR) at an early stage of the treatment.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70030","citationCount":"0","resultStr":"{\"title\":\"CAAFE-ResNet: A ResNet With Channel Attention-Augmented Feature Extraction for Prognostic Assessment in Rectal Cancer\",\"authors\":\"Qing Lu, Jiaojiao Zhang, Qianwen Xue, Jinping Ma, Sheng Fang, Hui Ma, Yulin Zhang, Longbo Zheng\",\"doi\":\"10.1049/syb2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic resonance imaging (MRI) has a pivotal role in both pretreatment staging and post-treatment evaluation of rectal cancer. This study presents an innovative deep learning model, CAAFE-ResNet18*, based on the residual neural network ResNet18*. The model features an ingeniously designed feature extraction and complementation module (i.e., CAAFE), which leverages a multiscale dilated convolution parallel architecture combined with a channel attention mechanism (CAM) to achieve multilevel information fusion, spatial feature enhancement and channel feature optimisation. This enables in-depth exploration and augmentation of multilevel downsampled features, significantly improving feature representation capability and overall performance. Testing on rectal cancer MRI data demonstrates that the CAAFE-ResNet18* model significantly outperforms convolutional neural network (CNN) backbone networks and recent state-of-the-art (SOTA) models. This result indicates that the CAAFE model, by complementing and extracting MR images of patients with locally advanced rectal cancer (LARC) features at different scales from ResNet18*, may help to identify patients who will show complete response (CR) at the end of treatment and those who will not respond to therapy (NR) at an early stage of the treatment.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CAAFE-ResNet: A ResNet With Channel Attention-Augmented Feature Extraction for Prognostic Assessment in Rectal Cancer
Magnetic resonance imaging (MRI) has a pivotal role in both pretreatment staging and post-treatment evaluation of rectal cancer. This study presents an innovative deep learning model, CAAFE-ResNet18*, based on the residual neural network ResNet18*. The model features an ingeniously designed feature extraction and complementation module (i.e., CAAFE), which leverages a multiscale dilated convolution parallel architecture combined with a channel attention mechanism (CAM) to achieve multilevel information fusion, spatial feature enhancement and channel feature optimisation. This enables in-depth exploration and augmentation of multilevel downsampled features, significantly improving feature representation capability and overall performance. Testing on rectal cancer MRI data demonstrates that the CAAFE-ResNet18* model significantly outperforms convolutional neural network (CNN) backbone networks and recent state-of-the-art (SOTA) models. This result indicates that the CAAFE model, by complementing and extracting MR images of patients with locally advanced rectal cancer (LARC) features at different scales from ResNet18*, may help to identify patients who will show complete response (CR) at the end of treatment and those who will not respond to therapy (NR) at an early stage of the treatment.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.