{"title":"基于一致耦合应力理论的水平剪切波在尺寸相关夹层板中的传播动力学","authors":"M. Kaur, S. Kumar, V. Sharma","doi":"10.1134/S1029959924601660","DOIUrl":null,"url":null,"abstract":"<p>Sandwich structures with thin, stiff and heavy facings compared to the core are employed in civil and aerospace engineering, while those with thick, soft and lighter facings are preferred in precipitator plate applications. Insights gained into the behavior of horizontally polarized shear (SH) waves in sandwich structures can guide the design of more resilient and efficient composites, enhancing their performance under dynamic loading conditions. The dynamic behavior of a sandwich structure with symmetric facings is rigorously analyzed within the framework of the consistent couple stress model of elasticity. Harmonic wave solutions are derived, provided that they satisfy either traction-free or fixed boundary conditions on the faces, while maintaining continuity of tractions and displacements at the interfaces between the core and facings. This analysis uses the size-dependent consistent couple stress elasticity, which incorporates a length parameter (characteristic length) assumed to be of the same order as the internal microstructures of the material. Dispersion relations for the propagation of SH waves are calculated under both stress-free and fixed boundary conditions. Detailed mathematical results are provided, accompanied by graphical illustrations that show the impacts of characteristic length parameters and thicknesses of the core and facings on the phase velocity under both symmetrical and skew-symmetrical conditions.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 4","pages":"547 - 568"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Horizontal Shear Waves Propagating in Size-Dependent Sandwich Plates Using Consistent Couple Stress Theory\",\"authors\":\"M. Kaur, S. Kumar, V. Sharma\",\"doi\":\"10.1134/S1029959924601660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sandwich structures with thin, stiff and heavy facings compared to the core are employed in civil and aerospace engineering, while those with thick, soft and lighter facings are preferred in precipitator plate applications. Insights gained into the behavior of horizontally polarized shear (SH) waves in sandwich structures can guide the design of more resilient and efficient composites, enhancing their performance under dynamic loading conditions. The dynamic behavior of a sandwich structure with symmetric facings is rigorously analyzed within the framework of the consistent couple stress model of elasticity. Harmonic wave solutions are derived, provided that they satisfy either traction-free or fixed boundary conditions on the faces, while maintaining continuity of tractions and displacements at the interfaces between the core and facings. This analysis uses the size-dependent consistent couple stress elasticity, which incorporates a length parameter (characteristic length) assumed to be of the same order as the internal microstructures of the material. Dispersion relations for the propagation of SH waves are calculated under both stress-free and fixed boundary conditions. Detailed mathematical results are provided, accompanied by graphical illustrations that show the impacts of characteristic length parameters and thicknesses of the core and facings on the phase velocity under both symmetrical and skew-symmetrical conditions.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"28 4\",\"pages\":\"547 - 568\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924601660\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601660","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Dynamics of Horizontal Shear Waves Propagating in Size-Dependent Sandwich Plates Using Consistent Couple Stress Theory
Sandwich structures with thin, stiff and heavy facings compared to the core are employed in civil and aerospace engineering, while those with thick, soft and lighter facings are preferred in precipitator plate applications. Insights gained into the behavior of horizontally polarized shear (SH) waves in sandwich structures can guide the design of more resilient and efficient composites, enhancing their performance under dynamic loading conditions. The dynamic behavior of a sandwich structure with symmetric facings is rigorously analyzed within the framework of the consistent couple stress model of elasticity. Harmonic wave solutions are derived, provided that they satisfy either traction-free or fixed boundary conditions on the faces, while maintaining continuity of tractions and displacements at the interfaces between the core and facings. This analysis uses the size-dependent consistent couple stress elasticity, which incorporates a length parameter (characteristic length) assumed to be of the same order as the internal microstructures of the material. Dispersion relations for the propagation of SH waves are calculated under both stress-free and fixed boundary conditions. Detailed mathematical results are provided, accompanied by graphical illustrations that show the impacts of characteristic length parameters and thicknesses of the core and facings on the phase velocity under both symmetrical and skew-symmetrical conditions.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.