13种预测环肽膜通透性的人工智能方法的系统基准测试

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Liu, Jianguo Li, Chandra S. Verma, Hwee Kuan Lee
{"title":"13种预测环肽膜通透性的人工智能方法的系统基准测试","authors":"Wei Liu,&nbsp;Jianguo Li,&nbsp;Chandra S. Verma,&nbsp;Hwee Kuan Lee","doi":"10.1186/s13321-025-01083-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclic peptides are promising drug candidates due to their ability to modulate intracellular protein–protein interactions, a property often inaccessible to small molecules. However, their typically poor membrane permeability limits therapeutic applicability. Accurate computational prediction of permeability can accelerate the identification of cell-permeable candidates, reducing reliance on time-consuming and costly experimental screening. Although deep learning has shown potential in predicting molecular properties, its application in permeability prediction remains underexplored. A systematic evaluation of these models is important to assess current capabilities and guide future development. In this study, we conduct a comprehensive benchmark of 13 machine learning models for predicting cyclic peptide membrane permeability. These models cover four types of molecular representations: fingerprints, SMILES strings, molecular graphs, and 2D images. We use experimentally measured PAMPA permeability data from the CycPeptMPDB database, comprising nearly 6000 cyclic peptides, and evaluate performance across three prediction tasks: regression, binary classification, and soft-label classification. Two data-splitting strategies, random split and scaffold split, are used to assess the generalizability of trained models. Our results show that model performance depends strongly on molecular representation and model architecture. Graph-based models, particularly the Directed Message Passing Neural Network (DMPNN), consistently achieve top performance across tasks. Regression generally outperforms classification. Scaffold-based splitting, although intended to more rigorously assess generalization, yields substantially lower model generalizability compared to random splitting. Comparing prediction errors with experimental variability highlights the practical value of current models while also indicating room for further improvement.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4","citationCount":"0","resultStr":"{\"title\":\"Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeability\",\"authors\":\"Wei Liu,&nbsp;Jianguo Li,&nbsp;Chandra S. Verma,&nbsp;Hwee Kuan Lee\",\"doi\":\"10.1186/s13321-025-01083-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyclic peptides are promising drug candidates due to their ability to modulate intracellular protein–protein interactions, a property often inaccessible to small molecules. However, their typically poor membrane permeability limits therapeutic applicability. Accurate computational prediction of permeability can accelerate the identification of cell-permeable candidates, reducing reliance on time-consuming and costly experimental screening. Although deep learning has shown potential in predicting molecular properties, its application in permeability prediction remains underexplored. A systematic evaluation of these models is important to assess current capabilities and guide future development. In this study, we conduct a comprehensive benchmark of 13 machine learning models for predicting cyclic peptide membrane permeability. These models cover four types of molecular representations: fingerprints, SMILES strings, molecular graphs, and 2D images. We use experimentally measured PAMPA permeability data from the CycPeptMPDB database, comprising nearly 6000 cyclic peptides, and evaluate performance across three prediction tasks: regression, binary classification, and soft-label classification. Two data-splitting strategies, random split and scaffold split, are used to assess the generalizability of trained models. Our results show that model performance depends strongly on molecular representation and model architecture. Graph-based models, particularly the Directed Message Passing Neural Network (DMPNN), consistently achieve top performance across tasks. Regression generally outperforms classification. Scaffold-based splitting, although intended to more rigorously assess generalization, yields substantially lower model generalizability compared to random splitting. Comparing prediction errors with experimental variability highlights the practical value of current models while also indicating room for further improvement.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01083-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01083-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01083-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环肽是很有希望的候选药物,因为它们能够调节细胞内蛋白质-蛋白质相互作用,这是小分子通常无法获得的特性。然而,它们典型的膜渗透性差限制了治疗的适用性。准确的渗透性计算预测可以加速细胞渗透性候选物的识别,减少对耗时和昂贵的实验筛选的依赖。尽管深度学习在预测分子性质方面显示出潜力,但其在渗透率预测方面的应用仍未得到充分探索。对这些模型进行系统的评估对于评估当前的能力和指导未来的发展非常重要。在这项研究中,我们对13种预测环肽膜通透性的机器学习模型进行了综合基准测试。这些模型涵盖了四种类型的分子表示:指纹、SMILES字符串、分子图和2D图像。我们使用实验测量的PAMPA渗透率数据来自CycPeptMPDB数据库,包含近6000个环肽,并评估了三个预测任务的性能:回归、二元分类和软标签分类。使用随机分割和支架分割两种数据分割策略来评估训练模型的泛化性。我们的研究结果表明,模型性能在很大程度上取决于分子表示和模型结构。基于图的模型,特别是定向消息传递神经网络(DMPNN),可以在任务之间始终实现最佳性能。回归通常优于分类。基于支架的分裂虽然旨在更严格地评估泛化,但与随机分裂相比,产生的模型泛化性要低得多。将预测误差与实验变率进行比较,突出了当前模型的实用价值,同时也表明了进一步改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic benchmarking of 13 AI methods for predicting cyclic peptide membrane permeability

Cyclic peptides are promising drug candidates due to their ability to modulate intracellular protein–protein interactions, a property often inaccessible to small molecules. However, their typically poor membrane permeability limits therapeutic applicability. Accurate computational prediction of permeability can accelerate the identification of cell-permeable candidates, reducing reliance on time-consuming and costly experimental screening. Although deep learning has shown potential in predicting molecular properties, its application in permeability prediction remains underexplored. A systematic evaluation of these models is important to assess current capabilities and guide future development. In this study, we conduct a comprehensive benchmark of 13 machine learning models for predicting cyclic peptide membrane permeability. These models cover four types of molecular representations: fingerprints, SMILES strings, molecular graphs, and 2D images. We use experimentally measured PAMPA permeability data from the CycPeptMPDB database, comprising nearly 6000 cyclic peptides, and evaluate performance across three prediction tasks: regression, binary classification, and soft-label classification. Two data-splitting strategies, random split and scaffold split, are used to assess the generalizability of trained models. Our results show that model performance depends strongly on molecular representation and model architecture. Graph-based models, particularly the Directed Message Passing Neural Network (DMPNN), consistently achieve top performance across tasks. Regression generally outperforms classification. Scaffold-based splitting, although intended to more rigorously assess generalization, yields substantially lower model generalizability compared to random splitting. Comparing prediction errors with experimental variability highlights the practical value of current models while also indicating room for further improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信