{"title":"天体物理学与紧凑的对象:一个印度的观点,现状和未来的愿景","authors":"Manjari Bagchi, Prasanta Bera, Aru Beri, Dipankar Bhattacharya, Bhaswati Bhattacharyya, Sudip Bhattacharyya, Manoneeta Chakraborty, Debarati Chatterjee, Sourav Chatterjee, Indranil Chattopadhyay, Santabrata Das, Sushan Konar, Pratik Majumdar, Ranjeev Misra, Arunava Mukherjee, Banibrata Mukhopadhyay, Mayukh Pahari, Krishna Kumar Singh, Mayuresh Surnis, Firoza Sutaria, Shriharsh Tendulkar","doi":"10.1007/s12036-025-10077-5","DOIUrl":null,"url":null,"abstract":"<div><p>Astrophysical compact objects, viz., white dwarfs, neutron stars and black holes, are the remnants of stellar deaths at the end of their life cycles. They are ideal testbeds for various fundamental physical processes under extreme conditions that are unique in nature. Observational radio astronomy with uGMRT and OORT facilities has led to several important breakthroughs in studies of different kinds of pulsars and their emission mechanisms. On the other hand, accretion processes around compact objects are at the core of Indian astronomy research. In this context, AstroSat mission revolutionized spectro-temporal observations and measurements of accretion phenomena, quasi-periodic oscillations, and jet behaviour in binary systems hosting compact objects. Moreover, recently launched XPoSat mission is set to provide an impetus to these high-energy phenomena around compact objects by enabling us to conduct polarization measurements in the X-ray band. Further, during the past decade, numerous gravitational wave signals have been observed from coalescing black holes and neutron stars in binary systems. Recent simultaneous observation of GW170817 event in both gravitational waves and electromagnetic channels has ushered in the era of multi-messenger astronomy. In the future, synergistic efforts among several world-class observational facilities, e.g., LIGO-India, SKA, TMT, etc., within the Indian astrophysics community will provide a significant boost to achieve several key science goals that have been delineated here. In general, this paper plans to highlight scientific projects being pursued across Indian institutions in this field, the scientific challenges that this community would be focusing, and the opportunities available in the coming decade. Finally, we have also mentioned the required resources, both in the form of infrastructural and human resources.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrophysics with compact objects: An Indian perspective, present status and future vision\",\"authors\":\"Manjari Bagchi, Prasanta Bera, Aru Beri, Dipankar Bhattacharya, Bhaswati Bhattacharyya, Sudip Bhattacharyya, Manoneeta Chakraborty, Debarati Chatterjee, Sourav Chatterjee, Indranil Chattopadhyay, Santabrata Das, Sushan Konar, Pratik Majumdar, Ranjeev Misra, Arunava Mukherjee, Banibrata Mukhopadhyay, Mayukh Pahari, Krishna Kumar Singh, Mayuresh Surnis, Firoza Sutaria, Shriharsh Tendulkar\",\"doi\":\"10.1007/s12036-025-10077-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Astrophysical compact objects, viz., white dwarfs, neutron stars and black holes, are the remnants of stellar deaths at the end of their life cycles. They are ideal testbeds for various fundamental physical processes under extreme conditions that are unique in nature. Observational radio astronomy with uGMRT and OORT facilities has led to several important breakthroughs in studies of different kinds of pulsars and their emission mechanisms. On the other hand, accretion processes around compact objects are at the core of Indian astronomy research. In this context, AstroSat mission revolutionized spectro-temporal observations and measurements of accretion phenomena, quasi-periodic oscillations, and jet behaviour in binary systems hosting compact objects. Moreover, recently launched XPoSat mission is set to provide an impetus to these high-energy phenomena around compact objects by enabling us to conduct polarization measurements in the X-ray band. Further, during the past decade, numerous gravitational wave signals have been observed from coalescing black holes and neutron stars in binary systems. Recent simultaneous observation of GW170817 event in both gravitational waves and electromagnetic channels has ushered in the era of multi-messenger astronomy. In the future, synergistic efforts among several world-class observational facilities, e.g., LIGO-India, SKA, TMT, etc., within the Indian astrophysics community will provide a significant boost to achieve several key science goals that have been delineated here. In general, this paper plans to highlight scientific projects being pursued across Indian institutions in this field, the scientific challenges that this community would be focusing, and the opportunities available in the coming decade. Finally, we have also mentioned the required resources, both in the form of infrastructural and human resources.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-025-10077-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-025-10077-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Astrophysics with compact objects: An Indian perspective, present status and future vision
Astrophysical compact objects, viz., white dwarfs, neutron stars and black holes, are the remnants of stellar deaths at the end of their life cycles. They are ideal testbeds for various fundamental physical processes under extreme conditions that are unique in nature. Observational radio astronomy with uGMRT and OORT facilities has led to several important breakthroughs in studies of different kinds of pulsars and their emission mechanisms. On the other hand, accretion processes around compact objects are at the core of Indian astronomy research. In this context, AstroSat mission revolutionized spectro-temporal observations and measurements of accretion phenomena, quasi-periodic oscillations, and jet behaviour in binary systems hosting compact objects. Moreover, recently launched XPoSat mission is set to provide an impetus to these high-energy phenomena around compact objects by enabling us to conduct polarization measurements in the X-ray band. Further, during the past decade, numerous gravitational wave signals have been observed from coalescing black holes and neutron stars in binary systems. Recent simultaneous observation of GW170817 event in both gravitational waves and electromagnetic channels has ushered in the era of multi-messenger astronomy. In the future, synergistic efforts among several world-class observational facilities, e.g., LIGO-India, SKA, TMT, etc., within the Indian astrophysics community will provide a significant boost to achieve several key science goals that have been delineated here. In general, this paper plans to highlight scientific projects being pursued across Indian institutions in this field, the scientific challenges that this community would be focusing, and the opportunities available in the coming decade. Finally, we have also mentioned the required resources, both in the form of infrastructural and human resources.
期刊介绍:
The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published.
Articles submitted as letters will be considered.