AdapTor:自适应拓扑回归定量结构-活动关系建模

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yixiang Mao, Souparno Ghosh, Ranadip Pal
{"title":"AdapTor:自适应拓扑回归定量结构-活动关系建模","authors":"Yixiang Mao,&nbsp;Souparno Ghosh,&nbsp;Ranadip Pal","doi":"10.1186/s13321-025-01071-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantitative structure–activity relationship (QSAR) modeling has become a critical tool in drug design. Recently proposed Topological Regression (TR), a computationally efficient and highly interpretable QSAR model that maps distances in the chemical domain to distances in the activity domain, has shown predictive performance comparable to state-of-the-art deep learning-based models. However, TR’s dependence on simple random sampling-based anchor selection and utilization of radial basis function for response reconstruction constrain its interpretability and predictive capacity. To address these limitations, we propose Adaptive Topological Regression (AdapToR) with adaptive anchor selection and optimization-based reconstruction. We evaluated AdapToR on the NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60 human cancer cell lines, and compared its performance to Transformer CNN, Graph Transformer, TR, and other baseline models. The results demonstrate that AdapToR outperforms competing QSAR models for drug response prediction with significantly lower computational cost and greater interpretability as compared to deep learning-based models.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01071-8","citationCount":"0","resultStr":"{\"title\":\"AdapTor: Adaptive Topological Regression for quantitative structure–activity relationship modeling\",\"authors\":\"Yixiang Mao,&nbsp;Souparno Ghosh,&nbsp;Ranadip Pal\",\"doi\":\"10.1186/s13321-025-01071-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantitative structure–activity relationship (QSAR) modeling has become a critical tool in drug design. Recently proposed Topological Regression (TR), a computationally efficient and highly interpretable QSAR model that maps distances in the chemical domain to distances in the activity domain, has shown predictive performance comparable to state-of-the-art deep learning-based models. However, TR’s dependence on simple random sampling-based anchor selection and utilization of radial basis function for response reconstruction constrain its interpretability and predictive capacity. To address these limitations, we propose Adaptive Topological Regression (AdapToR) with adaptive anchor selection and optimization-based reconstruction. We evaluated AdapToR on the NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60 human cancer cell lines, and compared its performance to Transformer CNN, Graph Transformer, TR, and other baseline models. The results demonstrate that AdapToR outperforms competing QSAR models for drug response prediction with significantly lower computational cost and greater interpretability as compared to deep learning-based models.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01071-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01071-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01071-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

定量构效关系(QSAR)模型已成为药物设计的重要工具。最近提出的拓扑回归(TR)是一种计算效率高、可高度解释的QSAR模型,它将化学域的距离映射到活动域的距离,其预测性能可与最先进的基于深度学习的模型相媲美。然而,TR依赖于基于简单随机抽样的锚点选择和利用径向基函数进行响应重建,限制了其可解释性和预测能力。为了解决这些限制,我们提出了自适应拓扑回归(AdapToR),具有自适应锚点选择和基于优化的重建。我们在NCI60 GI50数据集上对AdapToR进行了评估,该数据集包括60种人类癌细胞系中超过50,000种药物反应,并将其性能与Transformer CNN、Graph Transformer、TR和其他基线模型进行了比较。结果表明,与基于深度学习的模型相比,AdapToR在药物反应预测方面优于竞争对手的QSAR模型,计算成本显著降低,可解释性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AdapTor: Adaptive Topological Regression for quantitative structure–activity relationship modeling

Quantitative structure–activity relationship (QSAR) modeling has become a critical tool in drug design. Recently proposed Topological Regression (TR), a computationally efficient and highly interpretable QSAR model that maps distances in the chemical domain to distances in the activity domain, has shown predictive performance comparable to state-of-the-art deep learning-based models. However, TR’s dependence on simple random sampling-based anchor selection and utilization of radial basis function for response reconstruction constrain its interpretability and predictive capacity. To address these limitations, we propose Adaptive Topological Regression (AdapToR) with adaptive anchor selection and optimization-based reconstruction. We evaluated AdapToR on the NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60 human cancer cell lines, and compared its performance to Transformer CNN, Graph Transformer, TR, and other baseline models. The results demonstrate that AdapToR outperforms competing QSAR models for drug response prediction with significantly lower computational cost and greater interpretability as compared to deep learning-based models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信