基于U-Net的CFRTP复合材料热场估计

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Borja Ferrándiz, Mabel Palacios, Clément Mailhé, Anaïs Barasinski, Francisco Chinesta
{"title":"基于U-Net的CFRTP复合材料热场估计","authors":"Borja Ferrándiz,&nbsp;Mabel Palacios,&nbsp;Clément Mailhé,&nbsp;Anaïs Barasinski,&nbsp;Francisco Chinesta","doi":"10.1007/s12289-025-01939-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a surrogate model based on the convolutional U-Net architecture to predict the thermal field in a carbon fibre-reinforced thermoplastic tape at the microscale during brief and localized heating. Leveraging microstructure data within a machine learning framework, the proposed model aims to enhance the accuracy of temperature field predictions at a low computational cost. The incorporation of a co-attention mechanism to handle image channels of different nature significantly improves precision, resulting in a strong correlation between the model’s predictions and the ground truth obtained from the numerical solution of the heat equation. This capability enables rapid assessment of diverse microstructures, facilitating optimization and real-time applications in manufacturing settings.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01939-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal field estimation in CFRTP composites using an attention-enhanced U-Net\",\"authors\":\"Borja Ferrándiz,&nbsp;Mabel Palacios,&nbsp;Clément Mailhé,&nbsp;Anaïs Barasinski,&nbsp;Francisco Chinesta\",\"doi\":\"10.1007/s12289-025-01939-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a surrogate model based on the convolutional U-Net architecture to predict the thermal field in a carbon fibre-reinforced thermoplastic tape at the microscale during brief and localized heating. Leveraging microstructure data within a machine learning framework, the proposed model aims to enhance the accuracy of temperature field predictions at a low computational cost. The incorporation of a co-attention mechanism to handle image channels of different nature significantly improves precision, resulting in a strong correlation between the model’s predictions and the ground truth obtained from the numerical solution of the heat equation. This capability enables rapid assessment of diverse microstructures, facilitating optimization and real-time applications in manufacturing settings.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-025-01939-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01939-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01939-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于卷积U-Net架构的替代模型,用于预测碳纤维增强热塑性胶带在短暂和局部加热过程中的微尺度热场。利用机器学习框架内的微观结构数据,该模型旨在以较低的计算成本提高温度场预测的准确性。采用共同关注机制来处理不同性质的图像通道,显著提高了精度,使模型的预测结果与热方程数值解得到的真实值之间具有很强的相关性。这种能力可以快速评估各种微结构,促进制造环境中的优化和实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal field estimation in CFRTP composites using an attention-enhanced U-Net

This study presents a surrogate model based on the convolutional U-Net architecture to predict the thermal field in a carbon fibre-reinforced thermoplastic tape at the microscale during brief and localized heating. Leveraging microstructure data within a machine learning framework, the proposed model aims to enhance the accuracy of temperature field predictions at a low computational cost. The incorporation of a co-attention mechanism to handle image channels of different nature significantly improves precision, resulting in a strong correlation between the model’s predictions and the ground truth obtained from the numerical solution of the heat equation. This capability enables rapid assessment of diverse microstructures, facilitating optimization and real-time applications in manufacturing settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信