高光谱表面反射率利用模式-数据融合改进了陆地生物圈建模中的GPP估计

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Haoran Liu , Fa Li , Hamid Dashti , Min Chen
{"title":"高光谱表面反射率利用模式-数据融合改进了陆地生物圈建模中的GPP估计","authors":"Haoran Liu ,&nbsp;Fa Li ,&nbsp;Hamid Dashti ,&nbsp;Min Chen","doi":"10.1016/j.rse.2025.114989","DOIUrl":null,"url":null,"abstract":"<div><div>Gross Primary Productivity (GPP) estimates from terrestrial biosphere models (TBMs) are often uncertain due to limited constraints on vegetation biochemical and biophysical properties. Remote sensing offers promising opportunities to reduce these uncertainties, yet its full potential remains understudied. Here, we conducted model-data fusion experiments, including Observing System Simulation Experiments (OSSEs), and Observing System Experiments (OSEs) at the Harvard Forest site, using the Terrestrial Ecosystem Carbon cycle simulator (TECs) with an embedded spectral invariant theory-based radiative transfer model. In OSSEs, we assimilated synthetic hyperspectral reflectance, multispectral reflectance, and Leaf Area Index (LAI) into TECs to evaluate their effect under the ideal conditions. In OSEs, we assimilated PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral reflectance (620–1000 nm), MODerate resolution Imaging Spectroradiometer (MODIS) multispectral reflectance (broadband red and near-infrared), and MODIS-derived LAI to optimize model parameters, including several key vegetation traits such as leaf chlorophyll content (Cab), maximum carboxylation rate at 25 °C (V<sub>cmax25</sub>), and LAI. Results show that hyperspectral reflectance consistently outperforms multispectral reflectance and LAI in improving GPP estimates and reducing uncertainties, with RMSE decreasing from 2.68 to 1.18 μmol CO₂ m<sup>−2</sup> s<sup>−1</sup> in OSSEs, and from 6.74 to 5.42 μmol CO₂ m<sup>−2</sup> s<sup>−1</sup> in OSEs. This is because hyperspectral information better constrains seasonal variations in canopy structure and Cab. Meanwhile, both hyperspectral and multispectral reflectance outperform LAI, with information from both canopy structural parameters and leaf biochemical properties, thus offering a joint constraint on GPP simulations. Our findings highlight that remotely sensed reflectance data, particularly hyperspectral reflectance, have great potential to improve photosynthesis modeling and reduce uncertainties in GPP estimates within TBMs.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"330 ","pages":"Article 114989"},"PeriodicalIF":11.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral surface reflectance improves GPP estimation in terrestrial biosphere modeling using model-data fusion\",\"authors\":\"Haoran Liu ,&nbsp;Fa Li ,&nbsp;Hamid Dashti ,&nbsp;Min Chen\",\"doi\":\"10.1016/j.rse.2025.114989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gross Primary Productivity (GPP) estimates from terrestrial biosphere models (TBMs) are often uncertain due to limited constraints on vegetation biochemical and biophysical properties. Remote sensing offers promising opportunities to reduce these uncertainties, yet its full potential remains understudied. Here, we conducted model-data fusion experiments, including Observing System Simulation Experiments (OSSEs), and Observing System Experiments (OSEs) at the Harvard Forest site, using the Terrestrial Ecosystem Carbon cycle simulator (TECs) with an embedded spectral invariant theory-based radiative transfer model. In OSSEs, we assimilated synthetic hyperspectral reflectance, multispectral reflectance, and Leaf Area Index (LAI) into TECs to evaluate their effect under the ideal conditions. In OSEs, we assimilated PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral reflectance (620–1000 nm), MODerate resolution Imaging Spectroradiometer (MODIS) multispectral reflectance (broadband red and near-infrared), and MODIS-derived LAI to optimize model parameters, including several key vegetation traits such as leaf chlorophyll content (Cab), maximum carboxylation rate at 25 °C (V<sub>cmax25</sub>), and LAI. Results show that hyperspectral reflectance consistently outperforms multispectral reflectance and LAI in improving GPP estimates and reducing uncertainties, with RMSE decreasing from 2.68 to 1.18 μmol CO₂ m<sup>−2</sup> s<sup>−1</sup> in OSSEs, and from 6.74 to 5.42 μmol CO₂ m<sup>−2</sup> s<sup>−1</sup> in OSEs. This is because hyperspectral information better constrains seasonal variations in canopy structure and Cab. Meanwhile, both hyperspectral and multispectral reflectance outperform LAI, with information from both canopy structural parameters and leaf biochemical properties, thus offering a joint constraint on GPP simulations. Our findings highlight that remotely sensed reflectance data, particularly hyperspectral reflectance, have great potential to improve photosynthesis modeling and reduce uncertainties in GPP estimates within TBMs.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"330 \",\"pages\":\"Article 114989\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725003931\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003931","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于植被生物化学和生物物理特性的限制,陆地生物圈模型(tbm)估算的总初级生产力(GPP)往往不确定。遥感为减少这些不确定性提供了有希望的机会,但其全部潜力仍未得到充分研究。本研究利用基于光谱不变性辐射传输模型的陆地生态系统碳循环模拟器(tec),在哈佛林场开展了观测系统模拟实验(OSSEs)和观测系统实验(OSSEs)的模型数据融合实验。在OSSEs中,我们将合成高光谱反射率、多光谱反射率和叶面积指数(LAI)同化到tec中,以评估其在理想条件下的效果。在oes中,我们吸收了precursour IperSpettrale della Missione Applicativa (PRISMA)的高光谱反射率(620-1000 nm)、中分辨率成像光谱仪(MODIS)的多光谱反射率(宽带红色和近红外)以及MODIS衍生的LAI,以优化模型参数,包括叶片叶绿素含量(Cab)、25°C下最大羧基化率(Vcmax25)和LAI等几个关键植被特征。结果表明,高光谱反射率在提高GPP估计和减少不确定性方面始终优于多光谱反射率和LAI,在osse中,RMSE从2.68 μmol CO₂m−2 s−1降至1.18 μmol CO₂m−2 s−1,在osse中,RMSE从6.74 μmol CO₂m−2 s−1降至5.42 μmol CO₂m−2 s−1。这是因为高光谱信息更好地约束了冠层结构和Cab的季节变化。同时,高光谱和多光谱反射率都优于LAI,同时具有冠层结构参数和叶片生化特性的信息,从而为GPP模拟提供了联合约束。我们的研究结果强调,遥感反射率数据,特别是高光谱反射率数据,在改善光合作用模型和减少tbm内GPP估计的不确定性方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral surface reflectance improves GPP estimation in terrestrial biosphere modeling using model-data fusion
Gross Primary Productivity (GPP) estimates from terrestrial biosphere models (TBMs) are often uncertain due to limited constraints on vegetation biochemical and biophysical properties. Remote sensing offers promising opportunities to reduce these uncertainties, yet its full potential remains understudied. Here, we conducted model-data fusion experiments, including Observing System Simulation Experiments (OSSEs), and Observing System Experiments (OSEs) at the Harvard Forest site, using the Terrestrial Ecosystem Carbon cycle simulator (TECs) with an embedded spectral invariant theory-based radiative transfer model. In OSSEs, we assimilated synthetic hyperspectral reflectance, multispectral reflectance, and Leaf Area Index (LAI) into TECs to evaluate their effect under the ideal conditions. In OSEs, we assimilated PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral reflectance (620–1000 nm), MODerate resolution Imaging Spectroradiometer (MODIS) multispectral reflectance (broadband red and near-infrared), and MODIS-derived LAI to optimize model parameters, including several key vegetation traits such as leaf chlorophyll content (Cab), maximum carboxylation rate at 25 °C (Vcmax25), and LAI. Results show that hyperspectral reflectance consistently outperforms multispectral reflectance and LAI in improving GPP estimates and reducing uncertainties, with RMSE decreasing from 2.68 to 1.18 μmol CO₂ m−2 s−1 in OSSEs, and from 6.74 to 5.42 μmol CO₂ m−2 s−1 in OSEs. This is because hyperspectral information better constrains seasonal variations in canopy structure and Cab. Meanwhile, both hyperspectral and multispectral reflectance outperform LAI, with information from both canopy structural parameters and leaf biochemical properties, thus offering a joint constraint on GPP simulations. Our findings highlight that remotely sensed reflectance data, particularly hyperspectral reflectance, have great potential to improve photosynthesis modeling and reduce uncertainties in GPP estimates within TBMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信