通过顺序分类加强风电场风速预测

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
A.M. Gómez-Orellana , M. Vega-Bayo , D. Guijo-Rubio , J. Pérez-Aracil , V.M. Vargas , P.A. Gutiérrez , L. Prieto-Godino , S. Salcedo-Sanz , C. Hervás-Martínez
{"title":"通过顺序分类加强风电场风速预测","authors":"A.M. Gómez-Orellana ,&nbsp;M. Vega-Bayo ,&nbsp;D. Guijo-Rubio ,&nbsp;J. Pérez-Aracil ,&nbsp;V.M. Vargas ,&nbsp;P.A. Gutiérrez ,&nbsp;L. Prieto-Godino ,&nbsp;S. Salcedo-Sanz ,&nbsp;C. Hervás-Martínez","doi":"10.1016/j.egyai.2025.100596","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents and evaluates two novel ordinal classification methods for wind speed prediction, considering three prediction time-horizons: 1h, 4h, and 8h. To address the problem, wind speed values are discretised into four classes, critical for wind farm management. Each class represents essential information for wind farm production, ranging from very low wind speeds to extreme wind speed events and the corresponding production conditions, facilitating operational decisions for wind farm operators. Ordinal classifiers are more suitable than nominal methods to tackle this problem. The study’s primary objective is to compare recently proposed ordinal classifiers for addressing the challenges of wind speed prediction with a focus on extreme wind conditions, which are responsible for many turbine shutdowns. Hourly wind speed measurements from a Spanish wind farm and predictor variables from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5 Reanalysis) model are used. The proposed methods include an Artificial Neural Network (ANN) model implementing the Cumulative Link Model as an ordinal output function (<span><math><msup><mrow><mtext>MLP-CLM</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span>), which emphasises overall performance, and an ANN model optimised using a soft labelling technique based on triangular distributions (<span><math><msup><mrow><mtext>MLP-T</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span>), which excels at handling extreme class performance. The results demonstrate the superiority of both approaches over other nominal and ordinal methods across performance metrics that account for the unbalanced nature and ordinality of the data. <span><math><msup><mrow><mtext>MLP-CLM</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span> excels in overall and ordinal performance, while <span><math><msup><mrow><mtext>MLP-T</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span> demonstrates superior handling of the extreme class predictions.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100596"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing wind speed prediction in wind farms through ordinal classification\",\"authors\":\"A.M. Gómez-Orellana ,&nbsp;M. Vega-Bayo ,&nbsp;D. Guijo-Rubio ,&nbsp;J. Pérez-Aracil ,&nbsp;V.M. Vargas ,&nbsp;P.A. Gutiérrez ,&nbsp;L. Prieto-Godino ,&nbsp;S. Salcedo-Sanz ,&nbsp;C. Hervás-Martínez\",\"doi\":\"10.1016/j.egyai.2025.100596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents and evaluates two novel ordinal classification methods for wind speed prediction, considering three prediction time-horizons: 1h, 4h, and 8h. To address the problem, wind speed values are discretised into four classes, critical for wind farm management. Each class represents essential information for wind farm production, ranging from very low wind speeds to extreme wind speed events and the corresponding production conditions, facilitating operational decisions for wind farm operators. Ordinal classifiers are more suitable than nominal methods to tackle this problem. The study’s primary objective is to compare recently proposed ordinal classifiers for addressing the challenges of wind speed prediction with a focus on extreme wind conditions, which are responsible for many turbine shutdowns. Hourly wind speed measurements from a Spanish wind farm and predictor variables from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5 Reanalysis) model are used. The proposed methods include an Artificial Neural Network (ANN) model implementing the Cumulative Link Model as an ordinal output function (<span><math><msup><mrow><mtext>MLP-CLM</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span>), which emphasises overall performance, and an ANN model optimised using a soft labelling technique based on triangular distributions (<span><math><msup><mrow><mtext>MLP-T</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span>), which excels at handling extreme class performance. The results demonstrate the superiority of both approaches over other nominal and ordinal methods across performance metrics that account for the unbalanced nature and ordinality of the data. <span><math><msup><mrow><mtext>MLP-CLM</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span> excels in overall and ordinal performance, while <span><math><msup><mrow><mtext>MLP-T</mtext></mrow><mrow><mtext>O</mtext></mrow></msup></math></span> demonstrates superior handling of the extreme class predictions.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"22 \",\"pages\":\"Article 100596\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825001284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

考虑1h、4h和8h三个预测时段,提出并评价了两种新的风速排序预测方法。为了解决这个问题,风速值被离散成四个等级,这对风电场的管理至关重要。每一类都代表了风电场生产的基本信息,从极低风速到极端风速事件以及相应的生产条件,为风电场运营商的运营决策提供便利。序数分类器比名义分类器更适合解决这个问题。该研究的主要目的是比较最近提出的顺序分类器,以解决风速预测的挑战,重点是极端风条件,这是导致许多涡轮机关闭的原因。每小时风速测量来自西班牙风电场和预测变量来自欧洲中期天气预报中心再分析v5 (ERA5再分析)模型。提出的方法包括人工神经网络(ANN)模型,将累积链接模型实现为有序输出函数(MLP-CLMO),强调整体性能,以及使用基于三角分布的软标记技术优化的人工神经网络模型(MLP-TO),该模型擅长处理极端类性能。结果表明,在考虑数据的不平衡性质和有序性的性能指标上,这两种方法都优于其他标称和有序方法。MLP-CLMO在整体和顺序性能方面表现出色,而MLP-TO在极端类别预测方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing wind speed prediction in wind farms through ordinal classification
This paper presents and evaluates two novel ordinal classification methods for wind speed prediction, considering three prediction time-horizons: 1h, 4h, and 8h. To address the problem, wind speed values are discretised into four classes, critical for wind farm management. Each class represents essential information for wind farm production, ranging from very low wind speeds to extreme wind speed events and the corresponding production conditions, facilitating operational decisions for wind farm operators. Ordinal classifiers are more suitable than nominal methods to tackle this problem. The study’s primary objective is to compare recently proposed ordinal classifiers for addressing the challenges of wind speed prediction with a focus on extreme wind conditions, which are responsible for many turbine shutdowns. Hourly wind speed measurements from a Spanish wind farm and predictor variables from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5 Reanalysis) model are used. The proposed methods include an Artificial Neural Network (ANN) model implementing the Cumulative Link Model as an ordinal output function (MLP-CLMO), which emphasises overall performance, and an ANN model optimised using a soft labelling technique based on triangular distributions (MLP-TO), which excels at handling extreme class performance. The results demonstrate the superiority of both approaches over other nominal and ordinal methods across performance metrics that account for the unbalanced nature and ordinality of the data. MLP-CLMO excels in overall and ordinal performance, while MLP-TO demonstrates superior handling of the extreme class predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信