{"title":"基本屏障高度和潜在景观特征的概率方法","authors":"Yao Li , Molei Tao , Shirou Wang","doi":"10.1016/j.spa.2025.104763","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-dimensional potential functions. Under a suitable coupling scheme, two copies of the overdamped Langevin dynamics associated with the potential function are coupled, and the coupling times are collected. Assuming a set of intuitive yet technically challenging conditions on the coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively different dependencies on the noise magnitude for single-well versus multi-well potential functions. More specifically, for convex single-well potentials, the negative tail exponent of the coupling time distribution is uniformly bounded away from zero by the convexity parameter and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the <em>essential barrier height</em>, a quantity introduced in this paper to characterize the non-convex nature of the potential function. Numerical investigations are conducted for a variety of examples, including the Rosenbrock function, interacting particle systems, and loss functions arising in artificial neural networks. These examples not only illustrate the theoretical results in various contexts but also provide crucial numerical validation of the conjectured assumptions, which are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104763"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essential barrier height and a probabilistic approach in characterizing potential landscape\",\"authors\":\"Yao Li , Molei Tao , Shirou Wang\",\"doi\":\"10.1016/j.spa.2025.104763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-dimensional potential functions. Under a suitable coupling scheme, two copies of the overdamped Langevin dynamics associated with the potential function are coupled, and the coupling times are collected. Assuming a set of intuitive yet technically challenging conditions on the coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively different dependencies on the noise magnitude for single-well versus multi-well potential functions. More specifically, for convex single-well potentials, the negative tail exponent of the coupling time distribution is uniformly bounded away from zero by the convexity parameter and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the <em>essential barrier height</em>, a quantity introduced in this paper to characterize the non-convex nature of the potential function. Numerical investigations are conducted for a variety of examples, including the Rosenbrock function, interacting particle systems, and loss functions arising in artificial neural networks. These examples not only illustrate the theoretical results in various contexts but also provide crucial numerical validation of the conjectured assumptions, which are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104763\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925002078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Essential barrier height and a probabilistic approach in characterizing potential landscape
This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-dimensional potential functions. Under a suitable coupling scheme, two copies of the overdamped Langevin dynamics associated with the potential function are coupled, and the coupling times are collected. Assuming a set of intuitive yet technically challenging conditions on the coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively different dependencies on the noise magnitude for single-well versus multi-well potential functions. More specifically, for convex single-well potentials, the negative tail exponent of the coupling time distribution is uniformly bounded away from zero by the convexity parameter and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the essential barrier height, a quantity introduced in this paper to characterize the non-convex nature of the potential function. Numerical investigations are conducted for a variety of examples, including the Rosenbrock function, interacting particle systems, and loss functions arising in artificial neural networks. These examples not only illustrate the theoretical results in various contexts but also provide crucial numerical validation of the conjectured assumptions, which are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.