使用决策树对系统动力学模型输出进行分类

IF 4.9
Martina Curran, Enda Howley, Jim Duggan
{"title":"使用决策树对系统动力学模型输出进行分类","authors":"Martina Curran,&nbsp;Enda Howley,&nbsp;Jim Duggan","doi":"10.1016/j.mlwa.2025.100713","DOIUrl":null,"url":null,"abstract":"<div><div>Classification of behaviours generated by mathematical models such as an ODE is an important component in modelling fields including System Dynamics. Useful for model validation, and investigation into the parameters which drive the different behaviours, a machine learning model based on a decision tree is a valuable way to interpret the behaviours returned. This research presents the creation of categorical attributes for the classification of model outputs into 13 behaviours. With a pre-given training set, it allows for the classification of unlabelled data, with hyper-parameters which can be changed for fine-tuning depending on the model presented. Where asymptotic model outputs may cause difficulty, a user-defined threshold value is available. Tested using empirical data, the results show a strong improvement on the previously available methods for behaviour classification of System Dynamics model outputs, and demonstrated using F1 scores. Our method has general applicability for classification of all time series data.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100713"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of System Dynamics model outputs using decision trees\",\"authors\":\"Martina Curran,&nbsp;Enda Howley,&nbsp;Jim Duggan\",\"doi\":\"10.1016/j.mlwa.2025.100713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Classification of behaviours generated by mathematical models such as an ODE is an important component in modelling fields including System Dynamics. Useful for model validation, and investigation into the parameters which drive the different behaviours, a machine learning model based on a decision tree is a valuable way to interpret the behaviours returned. This research presents the creation of categorical attributes for the classification of model outputs into 13 behaviours. With a pre-given training set, it allows for the classification of unlabelled data, with hyper-parameters which can be changed for fine-tuning depending on the model presented. Where asymptotic model outputs may cause difficulty, a user-defined threshold value is available. Tested using empirical data, the results show a strong improvement on the previously available methods for behaviour classification of System Dynamics model outputs, and demonstrated using F1 scores. Our method has general applicability for classification of all time series data.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"21 \",\"pages\":\"Article 100713\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由数学模型(如ODE)生成的行为分类是包括系统动力学在内的建模领域的重要组成部分。对于模型验证和调查驱动不同行为的参数来说,基于决策树的机器学习模型是解释返回行为的一种有价值的方式。本研究提出了将模型输出分类为13种行为的分类属性的创建。使用预先给定的训练集,它允许对未标记数据进行分类,并且可以根据所呈现的模型更改超参数以进行微调。在渐近模型输出可能导致困难的地方,可以使用用户定义的阈值。使用经验数据进行测试,结果显示在以前可用的系统动力学模型输出行为分类方法上有了很大的改进,并使用F1分数进行了证明。该方法对所有时间序列数据的分类都具有普遍的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of System Dynamics model outputs using decision trees
Classification of behaviours generated by mathematical models such as an ODE is an important component in modelling fields including System Dynamics. Useful for model validation, and investigation into the parameters which drive the different behaviours, a machine learning model based on a decision tree is a valuable way to interpret the behaviours returned. This research presents the creation of categorical attributes for the classification of model outputs into 13 behaviours. With a pre-given training set, it allows for the classification of unlabelled data, with hyper-parameters which can be changed for fine-tuning depending on the model presented. Where asymptotic model outputs may cause difficulty, a user-defined threshold value is available. Tested using empirical data, the results show a strong improvement on the previously available methods for behaviour classification of System Dynamics model outputs, and demonstrated using F1 scores. Our method has general applicability for classification of all time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信