Ina V. Martin , Christian Dippel , Eva M. Buhl , Robert Göllinger , Katja Ermert , Jürgen Floege , Eleni Stamellou , Ute Raffetseder , Rafael Kramann , Tammo Ostendorf
{"title":"血小板源性生长因子- c参与实验性高血压肾炎症,对小管周围毛细血管网络影响不大","authors":"Ina V. Martin , Christian Dippel , Eva M. Buhl , Robert Göllinger , Katja Ermert , Jürgen Floege , Eleni Stamellou , Ute Raffetseder , Rafael Kramann , Tammo Ostendorf","doi":"10.1016/j.yexmp.2025.104994","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Platelet-Derived Growth Factor (PDGF)-C plays a significant role in kidney fibrosis, angiogenesis, and hypertension. While its involvement in the healing of damaged glomerular capillaries is well recognized, its function in kidney peritubular capillaries (PTCs) remains less understood. Therefore, this study investigates the role of PDGF-C in PTCs under both homeostatic conditions and experimentally angiotensin II (AngII)-induced hypertension.</div></div><div><h3>Materials and methods</h3><div>We utilized mice with systemic PDGF-C antagonism or conditional deletion of endothelial-derived PDGF-C (<em>Cdh5-cre::Pdgfc</em><sup><em>flox/flox</em></sup>) in an AngII-induced hypertension model. The PTC network, glycocalyx, and inflammatory parameters in the kidneys were analyzed and quantified using qPCR, electron microscopy, and fluorescence microscopy.</div></div><div><h3>Results</h3><div>Systemic antagonism of PDGF-C in the AngII model reduced peritubular accumulation of PDGF receptor-expressing mesenchymal cells and the expression of <em>Ccl2</em>, <em>Plat</em> and <em>Nos3</em>, while PTC density and glycocalyx-regulating genes remained unaffected. Conditional deletion of endothelial cell-derived PDGF-C did not affect peritubular accumulation of mesenchymal cells, blood pressure or genes associated with angiogenesis; it also had no impact on the PTC network or glycocalyx. Notably, a reduction in inflammatory infiltrates was observed in the hypertensive <em>Cdh5-cre::Pdgfc</em><sup><em>flox/flox</em></sup> -mice.</div></div><div><h3>Conclusion</h3><div>Despite influencing certain parameters critical for endothelial homeostasis, such as PDGFR<sup>+</sup> pericyte recruitment following systemic PDGF-C antagonism during hypertension, PDGF-C has minimal effects on the PTC network. Conversely, both systemic and endothelial cell-derived PDGF-C modulate the inflammatory response associated with hypertension in the kidney. Our findings help mitigate safety concerns about pharmacological PDGF-C targeting and its impact on peritubular capillaries.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"143 ","pages":"Article 104994"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platelet-derived growth factor-C contributes to kidney inflammation in experimental hypertension with little effect on the peritubular capillary network\",\"authors\":\"Ina V. Martin , Christian Dippel , Eva M. Buhl , Robert Göllinger , Katja Ermert , Jürgen Floege , Eleni Stamellou , Ute Raffetseder , Rafael Kramann , Tammo Ostendorf\",\"doi\":\"10.1016/j.yexmp.2025.104994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and aims</h3><div>Platelet-Derived Growth Factor (PDGF)-C plays a significant role in kidney fibrosis, angiogenesis, and hypertension. While its involvement in the healing of damaged glomerular capillaries is well recognized, its function in kidney peritubular capillaries (PTCs) remains less understood. Therefore, this study investigates the role of PDGF-C in PTCs under both homeostatic conditions and experimentally angiotensin II (AngII)-induced hypertension.</div></div><div><h3>Materials and methods</h3><div>We utilized mice with systemic PDGF-C antagonism or conditional deletion of endothelial-derived PDGF-C (<em>Cdh5-cre::Pdgfc</em><sup><em>flox/flox</em></sup>) in an AngII-induced hypertension model. The PTC network, glycocalyx, and inflammatory parameters in the kidneys were analyzed and quantified using qPCR, electron microscopy, and fluorescence microscopy.</div></div><div><h3>Results</h3><div>Systemic antagonism of PDGF-C in the AngII model reduced peritubular accumulation of PDGF receptor-expressing mesenchymal cells and the expression of <em>Ccl2</em>, <em>Plat</em> and <em>Nos3</em>, while PTC density and glycocalyx-regulating genes remained unaffected. Conditional deletion of endothelial cell-derived PDGF-C did not affect peritubular accumulation of mesenchymal cells, blood pressure or genes associated with angiogenesis; it also had no impact on the PTC network or glycocalyx. Notably, a reduction in inflammatory infiltrates was observed in the hypertensive <em>Cdh5-cre::Pdgfc</em><sup><em>flox/flox</em></sup> -mice.</div></div><div><h3>Conclusion</h3><div>Despite influencing certain parameters critical for endothelial homeostasis, such as PDGFR<sup>+</sup> pericyte recruitment following systemic PDGF-C antagonism during hypertension, PDGF-C has minimal effects on the PTC network. Conversely, both systemic and endothelial cell-derived PDGF-C modulate the inflammatory response associated with hypertension in the kidney. Our findings help mitigate safety concerns about pharmacological PDGF-C targeting and its impact on peritubular capillaries.</div></div>\",\"PeriodicalId\":12176,\"journal\":{\"name\":\"Experimental and molecular pathology\",\"volume\":\"143 \",\"pages\":\"Article 104994\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and molecular pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014480025000449\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480025000449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Platelet-derived growth factor-C contributes to kidney inflammation in experimental hypertension with little effect on the peritubular capillary network
Background and aims
Platelet-Derived Growth Factor (PDGF)-C plays a significant role in kidney fibrosis, angiogenesis, and hypertension. While its involvement in the healing of damaged glomerular capillaries is well recognized, its function in kidney peritubular capillaries (PTCs) remains less understood. Therefore, this study investigates the role of PDGF-C in PTCs under both homeostatic conditions and experimentally angiotensin II (AngII)-induced hypertension.
Materials and methods
We utilized mice with systemic PDGF-C antagonism or conditional deletion of endothelial-derived PDGF-C (Cdh5-cre::Pdgfcflox/flox) in an AngII-induced hypertension model. The PTC network, glycocalyx, and inflammatory parameters in the kidneys were analyzed and quantified using qPCR, electron microscopy, and fluorescence microscopy.
Results
Systemic antagonism of PDGF-C in the AngII model reduced peritubular accumulation of PDGF receptor-expressing mesenchymal cells and the expression of Ccl2, Plat and Nos3, while PTC density and glycocalyx-regulating genes remained unaffected. Conditional deletion of endothelial cell-derived PDGF-C did not affect peritubular accumulation of mesenchymal cells, blood pressure or genes associated with angiogenesis; it also had no impact on the PTC network or glycocalyx. Notably, a reduction in inflammatory infiltrates was observed in the hypertensive Cdh5-cre::Pdgfcflox/flox -mice.
Conclusion
Despite influencing certain parameters critical for endothelial homeostasis, such as PDGFR+ pericyte recruitment following systemic PDGF-C antagonism during hypertension, PDGF-C has minimal effects on the PTC network. Conversely, both systemic and endothelial cell-derived PDGF-C modulate the inflammatory response associated with hypertension in the kidney. Our findings help mitigate safety concerns about pharmacological PDGF-C targeting and its impact on peritubular capillaries.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.