计算机断层扫描分类:一种实现强制随机森林算法的新方法

IF 2.7 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Michelangelo Biondi , Eleonora Bortoli , Lorenzo Marini , Rossella Avitabile , Antonietta Bartoli , Elena Busatti , Antonio Tozzi , Maria Cristina Cimmino , Lucia Piccini , Elisa Brinchi Giusti , Andrea Guasti
{"title":"计算机断层扫描分类:一种实现强制随机森林算法的新方法","authors":"Michelangelo Biondi ,&nbsp;Eleonora Bortoli ,&nbsp;Lorenzo Marini ,&nbsp;Rossella Avitabile ,&nbsp;Antonietta Bartoli ,&nbsp;Elena Busatti ,&nbsp;Antonio Tozzi ,&nbsp;Maria Cristina Cimmino ,&nbsp;Lucia Piccini ,&nbsp;Elisa Brinchi Giusti ,&nbsp;Andrea Guasti","doi":"10.1016/j.ejmp.2025.105080","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Medical imaging faces critical challenges in radiation dose management and protocol standardisation. This study introduces a machine learning approach using a random forest algorithm to classify Computed Tomography (CT) scan protocols. By leveraging dose monitoring system data, we provide a data-driven solution for establishing Diagnostic Reference Levels while minimising computational resources.</div></div><div><h3>Materials and method</h3><div>We developed a classification workflow using a Random Forest Classifier to categorise CT scans into anatomical regions: head, thorax, abdomen, spine, and complex multi-region scans (thorax + abdomen and total body). The methodology featured an iterative “human-in-the-loop” refinement process involving data preprocessing, machine learning algorithm training, expert validation, and protocol classification. After training the initial model, we applied the methodology to a new, independent dataset.</div></div><div><h3>Results</h3><div>By analysing 52,982 CT scan records from 11 imaging devices across five hospitals, we train the classificator to distinguish multiple anatomical regions, categorising scans into head, thorax, abdomen, and spine. The final validation on the new database confirmed the model’s robustness, achieving a 97 % accuracy.</div></div><div><h3>Discussion</h3><div>This research introduces a novel medical imaging protocol classification approach by shifting from manual, time-consuming processes to a data-driven approach integrating a random forest algorithm.</div></div><div><h3>Conclusion</h3><div>Our study presents a transformative approach to CT scan protocol classification, demonstrating the potential of data-driven methodologies in medical imaging. We have created a framework for managing protocol classification and establishing DRL by integrating computational intelligence with clinical expertise. Future research will explore applying this methodology to other radiological procedures.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"137 ","pages":"Article 105080"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of computed tomography scans: a novel approach implementing an enforced random forest algorithm\",\"authors\":\"Michelangelo Biondi ,&nbsp;Eleonora Bortoli ,&nbsp;Lorenzo Marini ,&nbsp;Rossella Avitabile ,&nbsp;Antonietta Bartoli ,&nbsp;Elena Busatti ,&nbsp;Antonio Tozzi ,&nbsp;Maria Cristina Cimmino ,&nbsp;Lucia Piccini ,&nbsp;Elisa Brinchi Giusti ,&nbsp;Andrea Guasti\",\"doi\":\"10.1016/j.ejmp.2025.105080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Medical imaging faces critical challenges in radiation dose management and protocol standardisation. This study introduces a machine learning approach using a random forest algorithm to classify Computed Tomography (CT) scan protocols. By leveraging dose monitoring system data, we provide a data-driven solution for establishing Diagnostic Reference Levels while minimising computational resources.</div></div><div><h3>Materials and method</h3><div>We developed a classification workflow using a Random Forest Classifier to categorise CT scans into anatomical regions: head, thorax, abdomen, spine, and complex multi-region scans (thorax + abdomen and total body). The methodology featured an iterative “human-in-the-loop” refinement process involving data preprocessing, machine learning algorithm training, expert validation, and protocol classification. After training the initial model, we applied the methodology to a new, independent dataset.</div></div><div><h3>Results</h3><div>By analysing 52,982 CT scan records from 11 imaging devices across five hospitals, we train the classificator to distinguish multiple anatomical regions, categorising scans into head, thorax, abdomen, and spine. The final validation on the new database confirmed the model’s robustness, achieving a 97 % accuracy.</div></div><div><h3>Discussion</h3><div>This research introduces a novel medical imaging protocol classification approach by shifting from manual, time-consuming processes to a data-driven approach integrating a random forest algorithm.</div></div><div><h3>Conclusion</h3><div>Our study presents a transformative approach to CT scan protocol classification, demonstrating the potential of data-driven methodologies in medical imaging. We have created a framework for managing protocol classification and establishing DRL by integrating computational intelligence with clinical expertise. Future research will explore applying this methodology to other radiological procedures.</div></div>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"137 \",\"pages\":\"Article 105080\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1120179725001905\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1120179725001905","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

医学影像学在辐射剂量管理和方案标准化方面面临严峻挑战。本文介绍了一种使用随机森林算法对CT扫描协议进行分类的机器学习方法。通过利用剂量监测系统数据,我们提供了一个数据驱动的解决方案,以建立诊断参考水平,同时最大限度地减少计算资源。我们开发了一个分类工作流程,使用随机森林分类器将CT扫描分为解剖区域:头部、胸部、腹部、脊柱和复杂的多区域扫描(胸+腹部和全身)。该方法的特点是一个迭代的“人在循环”的改进过程,包括数据预处理、机器学习算法训练、专家验证和协议分类。在训练初始模型之后,我们将该方法应用于一个新的独立数据集。结果通过分析来自5家医院11台成像设备的52,982份CT扫描记录,我们训练了分类器来区分多个解剖区域,将扫描分为头部、胸部、腹部和脊柱。在新数据库上的最终验证证实了模型的鲁棒性,达到了97%的准确率。本研究介绍了一种新的医学成像协议分类方法,该方法从手动耗时的过程转变为集成随机森林算法的数据驱动方法。我们的研究提出了一种革命性的CT扫描方案分类方法,展示了数据驱动方法在医学成像中的潜力。我们通过将计算智能与临床专业知识相结合,创建了一个管理方案分类和建立DRL的框架。未来的研究将探索将该方法应用于其他放射学程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of computed tomography scans: a novel approach implementing an enforced random forest algorithm

Introduction

Medical imaging faces critical challenges in radiation dose management and protocol standardisation. This study introduces a machine learning approach using a random forest algorithm to classify Computed Tomography (CT) scan protocols. By leveraging dose monitoring system data, we provide a data-driven solution for establishing Diagnostic Reference Levels while minimising computational resources.

Materials and method

We developed a classification workflow using a Random Forest Classifier to categorise CT scans into anatomical regions: head, thorax, abdomen, spine, and complex multi-region scans (thorax + abdomen and total body). The methodology featured an iterative “human-in-the-loop” refinement process involving data preprocessing, machine learning algorithm training, expert validation, and protocol classification. After training the initial model, we applied the methodology to a new, independent dataset.

Results

By analysing 52,982 CT scan records from 11 imaging devices across five hospitals, we train the classificator to distinguish multiple anatomical regions, categorising scans into head, thorax, abdomen, and spine. The final validation on the new database confirmed the model’s robustness, achieving a 97 % accuracy.

Discussion

This research introduces a novel medical imaging protocol classification approach by shifting from manual, time-consuming processes to a data-driven approach integrating a random forest algorithm.

Conclusion

Our study presents a transformative approach to CT scan protocol classification, demonstrating the potential of data-driven methodologies in medical imaging. We have created a framework for managing protocol classification and establishing DRL by integrating computational intelligence with clinical expertise. Future research will explore applying this methodology to other radiological procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
14.70%
发文量
493
审稿时长
78 days
期刊介绍: Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics: Medical Imaging Radiation Therapy Radiation Protection Measuring Systems and Signal Processing Education and training in Medical Physics Professional issues in Medical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信