RadarTD:用于多参数优化的雷达文本数据集

Jackson S. Zaunegger , Paul G. Singerman , Ram M. Narayanan , Muralidhar Rangaswamy
{"title":"RadarTD:用于多参数优化的雷达文本数据集","authors":"Jackson S. Zaunegger ,&nbsp;Paul G. Singerman ,&nbsp;Ram M. Narayanan ,&nbsp;Muralidhar Rangaswamy","doi":"10.1016/j.nlp.2025.100178","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the radar text dataset (RadarTD) for technical language modeling. This dataset is comprised of sentences containing radar parameters, values, and units determined from published radar literature. Additionally, each statement is assigned a sentiment, goal priority, and goal direction label. In this work, we show how RadarTD may be used to train simple Natural Language Processing (NLP) models to identify the attributes of each sentence listed in RadarTD. Once the NLP models have identified these attributes from text, we can use this information to develop Language Based Cost Functions (LBCF). Our study shows that the proposed text classification model achieves a classification accuracy between 96.7% and 97.8%, while the proposed named entity recognition model achieves an F1 score of 99.7. These findings suggest that the developed models are capable of achieving good performance for both text classification and named entity recognition for autonomous radar applications. We then illustrate an example of how these models could be used with Language Based Cost Functions to develop multi-parameter radar optimization schemes. We also provide a method of providing scalarization weights for each parameter, to improve the results of the optimization process.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"12 ","pages":"Article 100178"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RadarTD: A Radar Text Dataset for multi-parameter optimization\",\"authors\":\"Jackson S. Zaunegger ,&nbsp;Paul G. Singerman ,&nbsp;Ram M. Narayanan ,&nbsp;Muralidhar Rangaswamy\",\"doi\":\"10.1016/j.nlp.2025.100178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces the radar text dataset (RadarTD) for technical language modeling. This dataset is comprised of sentences containing radar parameters, values, and units determined from published radar literature. Additionally, each statement is assigned a sentiment, goal priority, and goal direction label. In this work, we show how RadarTD may be used to train simple Natural Language Processing (NLP) models to identify the attributes of each sentence listed in RadarTD. Once the NLP models have identified these attributes from text, we can use this information to develop Language Based Cost Functions (LBCF). Our study shows that the proposed text classification model achieves a classification accuracy between 96.7% and 97.8%, while the proposed named entity recognition model achieves an F1 score of 99.7. These findings suggest that the developed models are capable of achieving good performance for both text classification and named entity recognition for autonomous radar applications. We then illustrate an example of how these models could be used with Language Based Cost Functions to develop multi-parameter radar optimization schemes. We also provide a method of providing scalarization weights for each parameter, to improve the results of the optimization process.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"12 \",\"pages\":\"Article 100178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719125000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了用于技术语言建模的雷达文本数据集(RadarTD)。该数据集由包含雷达参数、值和单位的句子组成,这些参数、值和单位是从已发表的雷达文献中确定的。此外,每个语句被分配一个情感、目标优先级和目标方向标签。在这项工作中,我们展示了如何使用RadarTD来训练简单的自然语言处理(NLP)模型来识别RadarTD中列出的每个句子的属性。一旦NLP模型从文本中识别出这些属性,我们就可以使用这些信息来开发基于语言的成本函数(LBCF)。研究表明,本文提出的文本分类模型的分类准确率在96.7% ~ 97.8%之间,而本文提出的命名实体识别模型的F1得分为99.7。这些发现表明,所开发的模型能够在自主雷达应用的文本分类和命名实体识别方面取得良好的性能。然后,我们举例说明如何将这些模型与基于语言的成本函数一起使用,以开发多参数雷达优化方案。我们还提供了一种为每个参数提供标量化权重的方法,以改善优化过程的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RadarTD: A Radar Text Dataset for multi-parameter optimization

RadarTD: A Radar Text Dataset for multi-parameter optimization
This paper introduces the radar text dataset (RadarTD) for technical language modeling. This dataset is comprised of sentences containing radar parameters, values, and units determined from published radar literature. Additionally, each statement is assigned a sentiment, goal priority, and goal direction label. In this work, we show how RadarTD may be used to train simple Natural Language Processing (NLP) models to identify the attributes of each sentence listed in RadarTD. Once the NLP models have identified these attributes from text, we can use this information to develop Language Based Cost Functions (LBCF). Our study shows that the proposed text classification model achieves a classification accuracy between 96.7% and 97.8%, while the proposed named entity recognition model achieves an F1 score of 99.7. These findings suggest that the developed models are capable of achieving good performance for both text classification and named entity recognition for autonomous radar applications. We then illustrate an example of how these models could be used with Language Based Cost Functions to develop multi-parameter radar optimization schemes. We also provide a method of providing scalarization weights for each parameter, to improve the results of the optimization process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信