基于协方差的卷积神经网络对未知异方差噪声的鲁棒频谱感知

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guiju Zhong , Zhen-Qing He , Zhi-Ping Shi , Hongbin Li
{"title":"基于协方差的卷积神经网络对未知异方差噪声的鲁棒频谱感知","authors":"Guiju Zhong ,&nbsp;Zhen-Qing He ,&nbsp;Zhi-Ping Shi ,&nbsp;Hongbin Li","doi":"10.1016/j.sigpro.2025.110254","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of spectrum sensing using multi-antenna cognitive receivers in unknown heteroscedastic noise environment, where the noise variances may vary in space and time. Specifically, we propose a robust data-driven spectrum sensing approach using a covariance-based deep convolutional neural network (CNN). In particular, we take the sample covariance matrix (SCM) with its unknown noise variances being well suppressed as the input of CNN to train a robust and generalized test statistic against the heteroscedastic noise. Meanwhile, we design a CNN architecture with a strided convolution layer to retain detailed feature information of the noise-suppressed SCM and a batch normalization layer to accelerate the CNN training. Various simulation results demonstrate that the proposed method attains an accurate detection performance and adapts well to different types of heteroscedastic noise. Particularly, the proposed approach achieves detection probabilities exceeding 99% and 95% under worst noise power ratios of 5 and 80, respectively, when the signal-to-noise ratio is <span><math><mrow><mo>−</mo><mn>18</mn></mrow></math></span> dB with a false alarm probability of 10%.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110254"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust spectrum sensing for unknown heteroscedastic noise via covariance-based convolutional neural network\",\"authors\":\"Guiju Zhong ,&nbsp;Zhen-Qing He ,&nbsp;Zhi-Ping Shi ,&nbsp;Hongbin Li\",\"doi\":\"10.1016/j.sigpro.2025.110254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the problem of spectrum sensing using multi-antenna cognitive receivers in unknown heteroscedastic noise environment, where the noise variances may vary in space and time. Specifically, we propose a robust data-driven spectrum sensing approach using a covariance-based deep convolutional neural network (CNN). In particular, we take the sample covariance matrix (SCM) with its unknown noise variances being well suppressed as the input of CNN to train a robust and generalized test statistic against the heteroscedastic noise. Meanwhile, we design a CNN architecture with a strided convolution layer to retain detailed feature information of the noise-suppressed SCM and a batch normalization layer to accelerate the CNN training. Various simulation results demonstrate that the proposed method attains an accurate detection performance and adapts well to different types of heteroscedastic noise. Particularly, the proposed approach achieves detection probabilities exceeding 99% and 95% under worst noise power ratios of 5 and 80, respectively, when the signal-to-noise ratio is <span><math><mrow><mo>−</mo><mn>18</mn></mrow></math></span> dB with a false alarm probability of 10%.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"239 \",\"pages\":\"Article 110254\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425003688\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003688","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了未知异方差噪声环境下多天线认知接收机的频谱感知问题,其中噪声的方差可能随时间和空间变化。具体来说,我们提出了一种基于协方差的深度卷积神经网络(CNN)的鲁棒数据驱动频谱感知方法。特别地,我们将其未知噪声方差被很好地抑制的样本协方差矩阵(SCM)作为CNN的输入,以训练针对异方差噪声的鲁棒广义检验统计量。同时,我们设计了一种具有跨行卷积层和批处理归一化层的CNN架构,前者保留了噪声抑制SCM的详细特征信息,而前者加速了CNN的训练。仿真结果表明,该方法具有较好的检测性能,对不同类型的异方差噪声具有较好的适应能力。特别是当信噪比为- 18 dB,虚警概率为10%时,在最坏噪声功率比为5和80时,该方法的检测概率分别超过99%和95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust spectrum sensing for unknown heteroscedastic noise via covariance-based convolutional neural network
This paper addresses the problem of spectrum sensing using multi-antenna cognitive receivers in unknown heteroscedastic noise environment, where the noise variances may vary in space and time. Specifically, we propose a robust data-driven spectrum sensing approach using a covariance-based deep convolutional neural network (CNN). In particular, we take the sample covariance matrix (SCM) with its unknown noise variances being well suppressed as the input of CNN to train a robust and generalized test statistic against the heteroscedastic noise. Meanwhile, we design a CNN architecture with a strided convolution layer to retain detailed feature information of the noise-suppressed SCM and a batch normalization layer to accelerate the CNN training. Various simulation results demonstrate that the proposed method attains an accurate detection performance and adapts well to different types of heteroscedastic noise. Particularly, the proposed approach achieves detection probabilities exceeding 99% and 95% under worst noise power ratios of 5 and 80, respectively, when the signal-to-noise ratio is 18 dB with a false alarm probability of 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信