小型微晶SiO2催化na2s2转化为na2s用于高性能室温钠硫电池

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jianfeng Huang, Yalin Zhang, Liyun Cao, Dewei Chu, Qingqing Huang, Yijun Liu, Yong Zhao, Junle Dong, Chunyi Cai, Shuzhuo Bai, Wen Wen, Jiayin Li
{"title":"小型微晶SiO2催化na2s2转化为na2s用于高性能室温钠硫电池","authors":"Jianfeng Huang, Yalin Zhang, Liyun Cao, Dewei Chu, Qingqing Huang, Yijun Liu, Yong Zhao, Junle Dong, Chunyi Cai, Shuzhuo Bai, Wen Wen, Jiayin Li","doi":"10.1039/d5qi01291k","DOIUrl":null,"url":null,"abstract":"Biomass-derived carbon materials are widely employed as cathode carriers for RT-Na/S batteries. However, their limited surface activity and scarcity of catalytic sites hinder stable long-term cycling performance, particularly under high current densities. In this work, we successfully synthesized large-sized, microcrystalline, and amorphous SiO2 structures via in situ growth on carbon substrates, utilizing the natural silicate components inherent to the biomass precursors. The designed C/M-SiO₂@S cathode demonstrates remarkable electrochemical performance, retaining a specific capacity of 1021 mAh g-1 after 5000 cycles at a high current density of 5 A g<small><sup>-1</sup></small>. The microcrystalline SiO₂ exhibits pronounced catalytic activity, significantly facilitating the conversion kinetics from Na2S2 to Na2S and enabling a shortened sodium-ion diffusion pathway. This study provides valuable insights for engineering catalytic architectures within biomass-derived carbon.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"23 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-Sized Microcrystalline SiO2 Catalyzed Na2S2-to-Na2S Conversion for High-Performance Room-Temperature Sodium-Sulfur Batteries\",\"authors\":\"Jianfeng Huang, Yalin Zhang, Liyun Cao, Dewei Chu, Qingqing Huang, Yijun Liu, Yong Zhao, Junle Dong, Chunyi Cai, Shuzhuo Bai, Wen Wen, Jiayin Li\",\"doi\":\"10.1039/d5qi01291k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomass-derived carbon materials are widely employed as cathode carriers for RT-Na/S batteries. However, their limited surface activity and scarcity of catalytic sites hinder stable long-term cycling performance, particularly under high current densities. In this work, we successfully synthesized large-sized, microcrystalline, and amorphous SiO2 structures via in situ growth on carbon substrates, utilizing the natural silicate components inherent to the biomass precursors. The designed C/M-SiO₂@S cathode demonstrates remarkable electrochemical performance, retaining a specific capacity of 1021 mAh g-1 after 5000 cycles at a high current density of 5 A g<small><sup>-1</sup></small>. The microcrystalline SiO₂ exhibits pronounced catalytic activity, significantly facilitating the conversion kinetics from Na2S2 to Na2S and enabling a shortened sodium-ion diffusion pathway. This study provides valuable insights for engineering catalytic architectures within biomass-derived carbon.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi01291k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01291k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

生物质衍生碳材料被广泛用作RT-Na/S电池的正极载体。然而,它们有限的表面活性和催化位点的稀缺性阻碍了稳定的长期循环性能,特别是在高电流密度下。在这项工作中,我们利用生物质前驱体中固有的天然硅酸盐成分,通过在碳基质上原位生长成功地合成了大尺寸、微晶和非晶SiO2结构。所设计的C/M-SiO₂@S阴极具有出色的电化学性能,在5 a g-1的高电流密度下,经过5000次循环后保持1021 mAh g-1的比容量。微晶sio2具有明显的催化活性,显著促进了Na2S2到Na2S的转化动力学,缩短了钠离子的扩散途径。这项研究为生物质衍生碳的工程催化结构提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small-Sized Microcrystalline SiO2 Catalyzed Na2S2-to-Na2S Conversion for High-Performance Room-Temperature Sodium-Sulfur Batteries
Biomass-derived carbon materials are widely employed as cathode carriers for RT-Na/S batteries. However, their limited surface activity and scarcity of catalytic sites hinder stable long-term cycling performance, particularly under high current densities. In this work, we successfully synthesized large-sized, microcrystalline, and amorphous SiO2 structures via in situ growth on carbon substrates, utilizing the natural silicate components inherent to the biomass precursors. The designed C/M-SiO₂@S cathode demonstrates remarkable electrochemical performance, retaining a specific capacity of 1021 mAh g-1 after 5000 cycles at a high current density of 5 A g-1. The microcrystalline SiO₂ exhibits pronounced catalytic activity, significantly facilitating the conversion kinetics from Na2S2 to Na2S and enabling a shortened sodium-ion diffusion pathway. This study provides valuable insights for engineering catalytic architectures within biomass-derived carbon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信