基于多项式分解的并行量子信号处理

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-27 DOI:10.22331/q-2025-08-27-1834
John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, Isaac L. Chuang
{"title":"基于多项式分解的并行量子信号处理","authors":"John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, Isaac L. Chuang","doi":"10.22331/q-2025-08-27-1834","DOIUrl":null,"url":null,"abstract":"Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\\rho$, QSP enables the evaluation of nonlinear functions of the form $\\text{tr}(P(\\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\\text{tr} (P(\\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \\text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Quantum Signal Processing Via Polynomial Factorization\",\"authors\":\"John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, Isaac L. Chuang\",\"doi\":\"10.22331/q-2025-08-27-1834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\\\\rho$, QSP enables the evaluation of nonlinear functions of the form $\\\\text{tr}(P(\\\\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\\\\text{tr} (P(\\\\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \\\\text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-27-1834\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-27-1834","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子信号处理(QSP)是一种构造线性算子的多项式变换的方法。应用于状态$\rho$的编码,QSP能够对多项式$P(x)$计算形式为$\text{tr}(P(\rho))$的非线性函数,它包含了熵和保真度等相关属性。然而,QSP是一个顺序算法:实现一个度数为$d$的多项式需要对编码进行$d$的查询,相当于查询深度$d$。在这里,我们通过开发并行量子信号处理来减少这些属性估计算法的深度。我们的算法将$\text{tr} (P(\rho))$在$k$系统上的计算并行化,并将查询深度降低到$d/k$,从而实现了QSP的一系列时空权衡。这提供了一种适用于分布式量子计算机的属性估计算法,并且以增加测量次数的因子$O(\text{poly}(d) 2^{O(k)})$为代价实现。我们通过将$P(x)$分解为$k次的$O(d/k)$较小多项式的乘积来实现此结果,每个多项式都与QSP并行实现,随后与交换测试一起相乘以重构$P(x)$。我们利用代数基本定理来描述可实现的多项式类,并演示了在典型问题中的应用,包括熵估计和配分函数评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Quantum Signal Processing Via Polynomial Factorization
Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\rho$, QSP enables the evaluation of nonlinear functions of the form $\text{tr}(P(\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\text{tr} (P(\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信