估计量子态功率轨迹的资源高效算法

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-27 DOI:10.22331/q-2025-08-27-1832
Myeongjin Shin, Junseo Lee, Seungwoo Lee, Kabgyun Jeong
{"title":"估计量子态功率轨迹的资源高效算法","authors":"Myeongjin Shin, Junseo Lee, Seungwoo Lee, Kabgyun Jeong","doi":"10.22331/q-2025-08-27-1832","DOIUrl":null,"url":null,"abstract":"Estimating the trace of quantum state powers, $\\text{Tr}(\\rho^k)$, for $k$ identical quantum states is a fundamental task with numerous applications in quantum information processing, including nonlinear function estimation of quantum states and entanglement detection. On near-term quantum devices, reducing the required quantum circuit depth, the number of multi-qubit quantum operations, and the copies of the quantum state needed for such computations is crucial. In this work, inspired by the Newton-Girard method, we significantly improve upon existing results by introducing an algorithm that requires only $\\mathcal{O}(\\widetilde{r})$ qubits and $\\mathcal{O}(\\widetilde{r})$ multi-qubit gates, where $\\widetilde{r} = \\min\\left\\{\\text{rank}(\\rho), \\left\\lceil\\ln\\left({2k}/{\\epsilon}\\right)\\right\\rceil\\right\\}$. This approach is efficient, as it employs the $\\tilde{r}$-entangled copy measurement instead of the conventional $k$-entangled copy measurement, while asymptotically preserving the known sample complexity upper bound. Furthermore, we prove that estimating $\\{\\text{Tr}(\\rho^i)\\}_{i=1}^{\\tilde{r}}$ is sufficient to approximate $\\text{Tr}(\\rho^k)$ even for large integers $k \\gt \\widetilde{r}$. This leads to a rank-dependent complexity for solving the problem, providing an efficient algorithm for low-rank quantum states while also improving existing methods when the rank is unknown or when the state is not low-rank. Building upon these advantages, we extend our algorithm to the estimation of $\\text{Tr}(M\\rho^k)$ for arbitrary observables and $\\text{Tr}(\\rho^k \\sigma^l)$ for multiple quantum states.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"16 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-efficient algorithm for estimating the trace of quantum state powers\",\"authors\":\"Myeongjin Shin, Junseo Lee, Seungwoo Lee, Kabgyun Jeong\",\"doi\":\"10.22331/q-2025-08-27-1832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the trace of quantum state powers, $\\\\text{Tr}(\\\\rho^k)$, for $k$ identical quantum states is a fundamental task with numerous applications in quantum information processing, including nonlinear function estimation of quantum states and entanglement detection. On near-term quantum devices, reducing the required quantum circuit depth, the number of multi-qubit quantum operations, and the copies of the quantum state needed for such computations is crucial. In this work, inspired by the Newton-Girard method, we significantly improve upon existing results by introducing an algorithm that requires only $\\\\mathcal{O}(\\\\widetilde{r})$ qubits and $\\\\mathcal{O}(\\\\widetilde{r})$ multi-qubit gates, where $\\\\widetilde{r} = \\\\min\\\\left\\\\{\\\\text{rank}(\\\\rho), \\\\left\\\\lceil\\\\ln\\\\left({2k}/{\\\\epsilon}\\\\right)\\\\right\\\\rceil\\\\right\\\\}$. This approach is efficient, as it employs the $\\\\tilde{r}$-entangled copy measurement instead of the conventional $k$-entangled copy measurement, while asymptotically preserving the known sample complexity upper bound. Furthermore, we prove that estimating $\\\\{\\\\text{Tr}(\\\\rho^i)\\\\}_{i=1}^{\\\\tilde{r}}$ is sufficient to approximate $\\\\text{Tr}(\\\\rho^k)$ even for large integers $k \\\\gt \\\\widetilde{r}$. This leads to a rank-dependent complexity for solving the problem, providing an efficient algorithm for low-rank quantum states while also improving existing methods when the rank is unknown or when the state is not low-rank. Building upon these advantages, we extend our algorithm to the estimation of $\\\\text{Tr}(M\\\\rho^k)$ for arbitrary observables and $\\\\text{Tr}(\\\\rho^k \\\\sigma^l)$ for multiple quantum states.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-08-27-1832\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-27-1832","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于$k$相同的量子态,估计量子态功率的轨迹$\text{Tr}(\rho^k)$是量子信息处理中许多应用的基本任务,包括量子态的非线性函数估计和纠缠检测。在近期的量子设备中,减少所需的量子电路深度、多量子位量子运算的数量以及此类计算所需的量子态副本是至关重要的。在这项工作中,受牛顿-吉拉德方法的启发,我们通过引入一种只需要$\mathcal{O}(\widetilde{r})$量子比特和$\mathcal{O}(\widetilde{r})$多量子比特门的算法,显著改进了现有的结果,其中$\widetilde{r} = \min\left\{\text{rank}(\rho), \left\lceil\ln\left({2k}/{\epsilon}\right)\right\rceil\right\}$。这种方法是有效的,因为它采用$\tilde{r}$ -纠缠复制测量而不是传统的$k$ -纠缠复制测量,同时渐近地保持已知的样本复杂度上界。进一步证明了即使对于大整数$k \gt \widetilde{r}$,估计$\{\text{Tr}(\rho^i)\}_{i=1}^{\tilde{r}}$也足以近似$\text{Tr}(\rho^k)$。这导致了求解问题的秩依赖复杂性,为低秩量子态提供了一种有效的算法,同时也改进了秩未知或非低秩状态时的现有方法。基于这些优点,我们将算法扩展到任意可观测值的$\text{Tr}(M\rho^k)$估计和多量子态的$\text{Tr}(\rho^k \sigma^l)$估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource-efficient algorithm for estimating the trace of quantum state powers
Estimating the trace of quantum state powers, $\text{Tr}(\rho^k)$, for $k$ identical quantum states is a fundamental task with numerous applications in quantum information processing, including nonlinear function estimation of quantum states and entanglement detection. On near-term quantum devices, reducing the required quantum circuit depth, the number of multi-qubit quantum operations, and the copies of the quantum state needed for such computations is crucial. In this work, inspired by the Newton-Girard method, we significantly improve upon existing results by introducing an algorithm that requires only $\mathcal{O}(\widetilde{r})$ qubits and $\mathcal{O}(\widetilde{r})$ multi-qubit gates, where $\widetilde{r} = \min\left\{\text{rank}(\rho), \left\lceil\ln\left({2k}/{\epsilon}\right)\right\rceil\right\}$. This approach is efficient, as it employs the $\tilde{r}$-entangled copy measurement instead of the conventional $k$-entangled copy measurement, while asymptotically preserving the known sample complexity upper bound. Furthermore, we prove that estimating $\{\text{Tr}(\rho^i)\}_{i=1}^{\tilde{r}}$ is sufficient to approximate $\text{Tr}(\rho^k)$ even for large integers $k \gt \widetilde{r}$. This leads to a rank-dependent complexity for solving the problem, providing an efficient algorithm for low-rank quantum states while also improving existing methods when the rank is unknown or when the state is not low-rank. Building upon these advantages, we extend our algorithm to the estimation of $\text{Tr}(M\rho^k)$ for arbitrary observables and $\text{Tr}(\rho^k \sigma^l)$ for multiple quantum states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信