预测人工智能中技术选择的社会学

IF 2.7 2区 社会学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Michael Zanger-Tishler, Simone Zhang
{"title":"预测人工智能中技术选择的社会学","authors":"Michael Zanger-Tishler, Simone Zhang","doi":"10.1177/08944393251367045","DOIUrl":null,"url":null,"abstract":"Predictive AI models increasingly guide high-stakes institutional decisions across domains from criminal justice to education to finance. A rich body of interdisciplinary scholarship has emerged examining the technical choices made during the creation of these systems. This article synthesizes this emerging literature for a sociology audience, mapping key decision points in predictive AI development where diverse forms of sociological expertise can contribute meaningful insights. From how social problems are translated into prediction problems, to how models are developed and evaluated, to how their outputs are presented to decision-makers and subjects, we outline various ways sociologists across subfields and methodological specialities can engage with the technical aspects of predictive AI. We discuss how this engagement can strengthen theoretical frameworks, expose embedded policy choices, and bridge the gap between model development and use. By examining technical choices and design processes, this agenda can deepen understanding of the reciprocal relationship between AI and society while advancing broader sociological theory and research.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sociology of Technical Choices in Predictive AI\",\"authors\":\"Michael Zanger-Tishler, Simone Zhang\",\"doi\":\"10.1177/08944393251367045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive AI models increasingly guide high-stakes institutional decisions across domains from criminal justice to education to finance. A rich body of interdisciplinary scholarship has emerged examining the technical choices made during the creation of these systems. This article synthesizes this emerging literature for a sociology audience, mapping key decision points in predictive AI development where diverse forms of sociological expertise can contribute meaningful insights. From how social problems are translated into prediction problems, to how models are developed and evaluated, to how their outputs are presented to decision-makers and subjects, we outline various ways sociologists across subfields and methodological specialities can engage with the technical aspects of predictive AI. We discuss how this engagement can strengthen theoretical frameworks, expose embedded policy choices, and bridge the gap between model development and use. By examining technical choices and design processes, this agenda can deepen understanding of the reciprocal relationship between AI and society while advancing broader sociological theory and research.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393251367045\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393251367045","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预测性人工智能模型越来越多地指导从刑事司法到教育再到金融等领域的高风险机构决策。大量跨学科的学术研究已经出现,研究这些系统创建过程中的技术选择。本文为社会学读者综合了这些新兴文献,绘制了预测性人工智能发展中的关键决策点,其中各种形式的社会学专业知识可以提供有意义的见解。从如何将社会问题转化为预测问题,到如何开发和评估模型,再到如何将模型的输出呈现给决策者和受试者,我们概述了跨子领域和方法论专业的社会学家参与预测人工智能技术方面的各种方式。我们讨论了这种参与如何加强理论框架,揭示嵌入的政策选择,并弥合模型开发和使用之间的差距。通过检查技术选择和设计过程,该议程可以加深对人工智能与社会之间互惠关系的理解,同时推进更广泛的社会学理论和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sociology of Technical Choices in Predictive AI
Predictive AI models increasingly guide high-stakes institutional decisions across domains from criminal justice to education to finance. A rich body of interdisciplinary scholarship has emerged examining the technical choices made during the creation of these systems. This article synthesizes this emerging literature for a sociology audience, mapping key decision points in predictive AI development where diverse forms of sociological expertise can contribute meaningful insights. From how social problems are translated into prediction problems, to how models are developed and evaluated, to how their outputs are presented to decision-makers and subjects, we outline various ways sociologists across subfields and methodological specialities can engage with the technical aspects of predictive AI. We discuss how this engagement can strengthen theoretical frameworks, expose embedded policy choices, and bridge the gap between model development and use. By examining technical choices and design processes, this agenda can deepen understanding of the reciprocal relationship between AI and society while advancing broader sociological theory and research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Science Computer Review
Social Science Computer Review 社会科学-计算机:跨学科应用
CiteScore
9.00
自引率
4.90%
发文量
95
审稿时长
>12 weeks
期刊介绍: Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信