Farman Ullah, Shoaib Khan, Tayyiaba Iqbal, Hamdy Kashtoh, Eman Alzahrani
{"title":"新型双噻二唑磺胺类药物作为阿尔茨海默病酶抑制剂的计算驱动探索:DFT和动力学视角","authors":"Farman Ullah, Shoaib Khan, Tayyiaba Iqbal, Hamdy Kashtoh, Eman Alzahrani","doi":"10.1111/cbdd.70166","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this research work, <i>bis</i>-thiadiazole based sulfonamide hybrid analogues <b>(1–15)</b> were synthesized by a novel synthetic approach. Structural confirmation was accomplished through <sup>1</sup>HNMR, <sup>13</sup>CNMR, and HREI-MS techniques. Further, these analogues were examined for their biological activities against AChE and BuChE (Alzheimer disease). These compounds have a diverse range of potency against targeted enzymes with inhibitory concentration ranges for AChE (2.80 ± 0.30–21.10 ± 0.10 μM) and for BuChE (3.20 ± 0.10–22.40 ± 0.70 μM), respectively. Compounds <b>4</b>, <b>9</b>, and <b>11</b> emerged as the potent compounds against targeted enzymes and have inhibitory concentrations lower than donepezil (IC<sub>50</sub> = 5.50 ± 0.10 and 6.10 ± 0.20 μM) used as a reference drug. In addition, versatile computational approaches were adopted to determine interactive properties (by molecular docking), electronic distribution and stability (through DFT calculations), and drug likeness characteristics (by ADMET predictions) of the synthesized potent scaffolds. Product confirmation was confirmed by thin layer chromatography.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"106 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally Driven Exploration of Novel bis-Thiadiazole Sulfonamides as Alzheimer's Enzyme Inhibitors: A DFT and Kinetic Perspective\",\"authors\":\"Farman Ullah, Shoaib Khan, Tayyiaba Iqbal, Hamdy Kashtoh, Eman Alzahrani\",\"doi\":\"10.1111/cbdd.70166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this research work, <i>bis</i>-thiadiazole based sulfonamide hybrid analogues <b>(1–15)</b> were synthesized by a novel synthetic approach. Structural confirmation was accomplished through <sup>1</sup>HNMR, <sup>13</sup>CNMR, and HREI-MS techniques. Further, these analogues were examined for their biological activities against AChE and BuChE (Alzheimer disease). These compounds have a diverse range of potency against targeted enzymes with inhibitory concentration ranges for AChE (2.80 ± 0.30–21.10 ± 0.10 μM) and for BuChE (3.20 ± 0.10–22.40 ± 0.70 μM), respectively. Compounds <b>4</b>, <b>9</b>, and <b>11</b> emerged as the potent compounds against targeted enzymes and have inhibitory concentrations lower than donepezil (IC<sub>50</sub> = 5.50 ± 0.10 and 6.10 ± 0.20 μM) used as a reference drug. In addition, versatile computational approaches were adopted to determine interactive properties (by molecular docking), electronic distribution and stability (through DFT calculations), and drug likeness characteristics (by ADMET predictions) of the synthesized potent scaffolds. Product confirmation was confirmed by thin layer chromatography.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"106 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70166\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70166","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computationally Driven Exploration of Novel bis-Thiadiazole Sulfonamides as Alzheimer's Enzyme Inhibitors: A DFT and Kinetic Perspective
In this research work, bis-thiadiazole based sulfonamide hybrid analogues (1–15) were synthesized by a novel synthetic approach. Structural confirmation was accomplished through 1HNMR, 13CNMR, and HREI-MS techniques. Further, these analogues were examined for their biological activities against AChE and BuChE (Alzheimer disease). These compounds have a diverse range of potency against targeted enzymes with inhibitory concentration ranges for AChE (2.80 ± 0.30–21.10 ± 0.10 μM) and for BuChE (3.20 ± 0.10–22.40 ± 0.70 μM), respectively. Compounds 4, 9, and 11 emerged as the potent compounds against targeted enzymes and have inhibitory concentrations lower than donepezil (IC50 = 5.50 ± 0.10 and 6.10 ± 0.20 μM) used as a reference drug. In addition, versatile computational approaches were adopted to determine interactive properties (by molecular docking), electronic distribution and stability (through DFT calculations), and drug likeness characteristics (by ADMET predictions) of the synthesized potent scaffolds. Product confirmation was confirmed by thin layer chromatography.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.