非金属摩擦电贴片作为一种多种应用的触觉传感器

IF 12
Vigneshwaran Mohan, Rence Painappallil Reji, Karthikeyan Krishnamoorthy, Yuvaraj Sivalingam, Surya Velappa Jayaraman, Sang-Jae Kim
{"title":"非金属摩擦电贴片作为一种多种应用的触觉传感器","authors":"Vigneshwaran Mohan,&nbsp;Rence Painappallil Reji,&nbsp;Karthikeyan Krishnamoorthy,&nbsp;Yuvaraj Sivalingam,&nbsp;Surya Velappa Jayaraman,&nbsp;Sang-Jae Kim","doi":"10.1002/cnl2.70038","DOIUrl":null,"url":null,"abstract":"<p>The growing demand for clean and sustainable energy sources, triboelectric nanogenerators (TENGs) have emerged as an efficient solution for harvesting electrical energy from biomechanical motion. In this study, we report the fabrication of TENG using sonochemically prepared graphene/polydimethylsiloxane (SGP) nanocomposite films as an active tribo-negative layer and polyethylene oxide (PEO) as a tribo-positive layer. The nanocomposite film with 0.75 wt% graphene exhibited superior triboelectric performance, achieving a high output voltage of 415 V and a current of 5.06 µA, respectively. The surface potential characteristics and charge transfer behaviour were systematically studied using Kelvin probe force microscopy (KPFM) and density functional theory (DFT) simulations, suggesting enhanced charge-trapping capability in the nanocomposite film is due to the presence of graphene in the polymer matrix. The fabricated SGP-TENG was successfully integrated into practical applicability such as human motion monitoring, gaming interfaces, and power-point control confirming its potential in futuristic self-powered systems.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70038","citationCount":"0","resultStr":"{\"title\":\"Non-Metallic Triboelectric Patch as a Haptic Sensor for Diversified Applications\",\"authors\":\"Vigneshwaran Mohan,&nbsp;Rence Painappallil Reji,&nbsp;Karthikeyan Krishnamoorthy,&nbsp;Yuvaraj Sivalingam,&nbsp;Surya Velappa Jayaraman,&nbsp;Sang-Jae Kim\",\"doi\":\"10.1002/cnl2.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing demand for clean and sustainable energy sources, triboelectric nanogenerators (TENGs) have emerged as an efficient solution for harvesting electrical energy from biomechanical motion. In this study, we report the fabrication of TENG using sonochemically prepared graphene/polydimethylsiloxane (SGP) nanocomposite films as an active tribo-negative layer and polyethylene oxide (PEO) as a tribo-positive layer. The nanocomposite film with 0.75 wt% graphene exhibited superior triboelectric performance, achieving a high output voltage of 415 V and a current of 5.06 µA, respectively. The surface potential characteristics and charge transfer behaviour were systematically studied using Kelvin probe force microscopy (KPFM) and density functional theory (DFT) simulations, suggesting enhanced charge-trapping capability in the nanocomposite film is due to the presence of graphene in the polymer matrix. The fabricated SGP-TENG was successfully integrated into practical applicability such as human motion monitoring, gaming interfaces, and power-point control confirming its potential in futuristic self-powered systems.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对清洁和可持续能源的需求不断增长,摩擦纳米发电机(TENGs)作为一种从生物力学运动中获取电能的有效解决方案应运而生。在这项研究中,我们报告了使用声化学方法制备的石墨烯/聚二甲基硅氧烷(SGP)纳米复合薄膜作为活性摩擦负层和聚乙烯氧化物(PEO)作为摩擦正层来制备TENG。石墨烯含量为0.75 wt%的纳米复合膜具有优异的摩擦电性能,输出电压为415 V,电流为5.06µa。利用开尔文探针力显微镜(KPFM)和密度泛函理论(DFT)模拟系统地研究了表面电位特征和电荷转移行为,表明纳米复合膜中电荷捕获能力的增强是由于石墨烯在聚合物基体中的存在。制造的SGP-TENG已成功集成到实际应用中,如人体运动监测、游戏界面和电源控制,证实了其在未来自供电系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-Metallic Triboelectric Patch as a Haptic Sensor for Diversified Applications

Non-Metallic Triboelectric Patch as a Haptic Sensor for Diversified Applications

The growing demand for clean and sustainable energy sources, triboelectric nanogenerators (TENGs) have emerged as an efficient solution for harvesting electrical energy from biomechanical motion. In this study, we report the fabrication of TENG using sonochemically prepared graphene/polydimethylsiloxane (SGP) nanocomposite films as an active tribo-negative layer and polyethylene oxide (PEO) as a tribo-positive layer. The nanocomposite film with 0.75 wt% graphene exhibited superior triboelectric performance, achieving a high output voltage of 415 V and a current of 5.06 µA, respectively. The surface potential characteristics and charge transfer behaviour were systematically studied using Kelvin probe force microscopy (KPFM) and density functional theory (DFT) simulations, suggesting enhanced charge-trapping capability in the nanocomposite film is due to the presence of graphene in the polymer matrix. The fabricated SGP-TENG was successfully integrated into practical applicability such as human motion monitoring, gaming interfaces, and power-point control confirming its potential in futuristic self-powered systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信