基于ga - pso优化的双路径关注网络预测纳微改性碱活化混凝土强度

Q2 Engineering
Neha Sharma, Arvind Dewangan, Vidhika Tiwari, Neelaz Singh, Rupesh Kumar Tipu, Sagar Paruthi
{"title":"基于ga - pso优化的双路径关注网络预测纳微改性碱活化混凝土强度","authors":"Neha Sharma,&nbsp;Arvind Dewangan,&nbsp;Vidhika Tiwari,&nbsp;Neelaz Singh,&nbsp;Rupesh Kumar Tipu,&nbsp;Sagar Paruthi","doi":"10.1007/s42107-025-01425-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel, chemically-aware framework for predicting the compressive strength of nano-/micro-modified alkali-activated concrete subjected to multi-ionic exposure. A comprehensive dataset of 324 unique mixes—varying binder precursor, nano- and micro-additives, aggregates, silicate–hydroxide ratio, superplasticizer dosage, curing temperature, and ionic exposure—is assembled. We engineer a Chemical Aggressivity Index (CAI) to quantify combined chemical effects and propose a Dual-Path Attention Network (DPAN) that processes material and exposure features in parallel. A hybrid Genetic Algorithm–Particle Swarm Optimisation (GA–PSO) simultaneously tunes network hyperparameters and feature weights, yielding an optimised DPAN with <span>\\(R^2=0.90\\)</span>, MAE = 2.98 MPa, and RMSE = 4.21 MPa on the test set—surpassing linear regression, SVR-RBF, Random Forest, and XGBoost. Monte Carlo dropout provides reliable uncertainty bands, while SHAP analysis reveals that precursor content, acid concentrations, and CAI most strongly influence strength. The proposed methodology advances data-driven mix design by capturing complex chemical–mechanical interactions and offering actionable insights for resilient, sustainable concrete in aggressive environments.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 10","pages":"4287 - 4302"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GA–PSO–optimised dual-path attention network for predicting strength of nano/micro-modified alkali-activated concrete\",\"authors\":\"Neha Sharma,&nbsp;Arvind Dewangan,&nbsp;Vidhika Tiwari,&nbsp;Neelaz Singh,&nbsp;Rupesh Kumar Tipu,&nbsp;Sagar Paruthi\",\"doi\":\"10.1007/s42107-025-01425-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel, chemically-aware framework for predicting the compressive strength of nano-/micro-modified alkali-activated concrete subjected to multi-ionic exposure. A comprehensive dataset of 324 unique mixes—varying binder precursor, nano- and micro-additives, aggregates, silicate–hydroxide ratio, superplasticizer dosage, curing temperature, and ionic exposure—is assembled. We engineer a Chemical Aggressivity Index (CAI) to quantify combined chemical effects and propose a Dual-Path Attention Network (DPAN) that processes material and exposure features in parallel. A hybrid Genetic Algorithm–Particle Swarm Optimisation (GA–PSO) simultaneously tunes network hyperparameters and feature weights, yielding an optimised DPAN with <span>\\\\(R^2=0.90\\\\)</span>, MAE = 2.98 MPa, and RMSE = 4.21 MPa on the test set—surpassing linear regression, SVR-RBF, Random Forest, and XGBoost. Monte Carlo dropout provides reliable uncertainty bands, while SHAP analysis reveals that precursor content, acid concentrations, and CAI most strongly influence strength. The proposed methodology advances data-driven mix design by capturing complex chemical–mechanical interactions and offering actionable insights for resilient, sustainable concrete in aggressive environments.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 10\",\"pages\":\"4287 - 4302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-025-01425-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01425-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的、化学感知的框架来预测纳米/微改性碱活化混凝土在多离子暴露下的抗压强度。一个综合数据集的324种独特的混合物-不同的粘结剂前驱体,纳米和微添加剂,骨料,硅酸盐-氢氧化物的比例,高效减水剂用量,固化温度,和离子暴露-组装。我们设计了一个化学侵蚀指数(CAI)来量化综合化学效应,并提出了一个双路径注意网络(DPAN),该网络可以并行处理材料和暴露特征。混合遗传算法-粒子群优化(GA-PSO)同时调整网络超参数和特征权重,在测试集上产生优化的DPAN \(R^2=0.90\), MAE = 2.98 MPa, RMSE = 4.21 MPa,超过线性回归,SVR-RBF,随机森林和XGBoost。Monte Carlo dropout提供了可靠的不确定带,而SHAP分析显示前体含量、酸浓度和CAI对强度的影响最大。所提出的方法通过捕捉复杂的化学-机械相互作用,并为在恶劣环境中具有弹性和可持续性的混凝土提供可操作的见解,从而推进数据驱动的混合设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GA–PSO–optimised dual-path attention network for predicting strength of nano/micro-modified alkali-activated concrete

GA–PSO–optimised dual-path attention network for predicting strength of nano/micro-modified alkali-activated concrete

GA–PSO–optimised dual-path attention network for predicting strength of nano/micro-modified alkali-activated concrete

We present a novel, chemically-aware framework for predicting the compressive strength of nano-/micro-modified alkali-activated concrete subjected to multi-ionic exposure. A comprehensive dataset of 324 unique mixes—varying binder precursor, nano- and micro-additives, aggregates, silicate–hydroxide ratio, superplasticizer dosage, curing temperature, and ionic exposure—is assembled. We engineer a Chemical Aggressivity Index (CAI) to quantify combined chemical effects and propose a Dual-Path Attention Network (DPAN) that processes material and exposure features in parallel. A hybrid Genetic Algorithm–Particle Swarm Optimisation (GA–PSO) simultaneously tunes network hyperparameters and feature weights, yielding an optimised DPAN with \(R^2=0.90\), MAE = 2.98 MPa, and RMSE = 4.21 MPa on the test set—surpassing linear regression, SVR-RBF, Random Forest, and XGBoost. Monte Carlo dropout provides reliable uncertainty bands, while SHAP analysis reveals that precursor content, acid concentrations, and CAI most strongly influence strength. The proposed methodology advances data-driven mix design by capturing complex chemical–mechanical interactions and offering actionable insights for resilient, sustainable concrete in aggressive environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信