湍流预混火焰的分形描述与三维和二维火焰起皱比的关系

IF 2.4 3区 工程技术 Q3 MECHANICS
Nilanjan Chakraborty, Markus Klein
{"title":"湍流预混火焰的分形描述与三维和二维火焰起皱比的关系","authors":"Nilanjan Chakraborty,&nbsp;Markus Klein","doi":"10.1007/s10494-025-00670-7","DOIUrl":null,"url":null,"abstract":"<div><p>A scaling relation has been derived to link the fractal dimension of a flame surface with the ratio of the normalised 3D flame surface area to its 2D counterpart. This derivation assumes an isotropic distribution of angles between the measurement plane and the flame’s normal vector, as well as a uniform distribution of angles between the principal direction and the flame’s tangent vector. The validity of the newly derived relation was assessed using an existing Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames, encompassing a range of different Karlovitz numbers. The DNS data-based assessment revealed that the newly derived relations are reasonably accurate for the thin reaction zones regime flames, with the precision of predictions based on isotropy improving, as the Karlovitz number increases. Moreover, 2D measurements of the flame surface fractal dimension and the flame wrinkling factor can be effectively used to predict the actual 3D flame wrinkling factor for flames with Karlovitz numbers much greater than unity. Alternatively, the ratio of the 3D wrinkling factor to its 2D counterpart can provide a reasonable estimate of the 3D fractal dimension for flames in the thin reaction zones regime. The newly derived relations provide an estimation for the value of fractal dimension in the limit of high Karlovitz number using an alternative route.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"917 - 926"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00670-7.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Interrelation of the Fractal Description and the Ratio of the 3D and 2D Flame Wrinkling for Turbulent Premixed Flames\",\"authors\":\"Nilanjan Chakraborty,&nbsp;Markus Klein\",\"doi\":\"10.1007/s10494-025-00670-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A scaling relation has been derived to link the fractal dimension of a flame surface with the ratio of the normalised 3D flame surface area to its 2D counterpart. This derivation assumes an isotropic distribution of angles between the measurement plane and the flame’s normal vector, as well as a uniform distribution of angles between the principal direction and the flame’s tangent vector. The validity of the newly derived relation was assessed using an existing Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames, encompassing a range of different Karlovitz numbers. The DNS data-based assessment revealed that the newly derived relations are reasonably accurate for the thin reaction zones regime flames, with the precision of predictions based on isotropy improving, as the Karlovitz number increases. Moreover, 2D measurements of the flame surface fractal dimension and the flame wrinkling factor can be effectively used to predict the actual 3D flame wrinkling factor for flames with Karlovitz numbers much greater than unity. Alternatively, the ratio of the 3D wrinkling factor to its 2D counterpart can provide a reasonable estimate of the 3D fractal dimension for flames in the thin reaction zones regime. The newly derived relations provide an estimation for the value of fractal dimension in the limit of high Karlovitz number using an alternative route.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"115 2\",\"pages\":\"917 - 926\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-025-00670-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-025-00670-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00670-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

导出了一种比例关系,将火焰表面的分形维数与归一化的3D火焰表面积与其2D对应物的比例联系起来。这个推导假设测量平面和火焰法向量之间的角度是各向同性分布,以及主方向和火焰切向量之间的角度是均匀分布。利用现有的平面湍流预混火焰直接数值模拟(DNS)数据库,包括一系列不同的Karlovitz数,评估了新推导关系的有效性。基于DNS数据的评估表明,新导出的关系对于薄反应区状态火焰来说是相当准确的,随着Karlovitz数的增加,基于各向同性的预测精度也在提高。此外,火焰表面分形维数和火焰起皱因子的二维测量结果可以有效地预测Karlovitz数远大于1的火焰的实际三维起皱因子。另外,三维起皱因子与二维起皱因子的比值可以为薄反应区火焰的三维分形维数提供合理的估计。新导出的关系提供了一种用替代路径估计高Karlovitz数极限处分形维数值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Interrelation of the Fractal Description and the Ratio of the 3D and 2D Flame Wrinkling for Turbulent Premixed Flames

A scaling relation has been derived to link the fractal dimension of a flame surface with the ratio of the normalised 3D flame surface area to its 2D counterpart. This derivation assumes an isotropic distribution of angles between the measurement plane and the flame’s normal vector, as well as a uniform distribution of angles between the principal direction and the flame’s tangent vector. The validity of the newly derived relation was assessed using an existing Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames, encompassing a range of different Karlovitz numbers. The DNS data-based assessment revealed that the newly derived relations are reasonably accurate for the thin reaction zones regime flames, with the precision of predictions based on isotropy improving, as the Karlovitz number increases. Moreover, 2D measurements of the flame surface fractal dimension and the flame wrinkling factor can be effectively used to predict the actual 3D flame wrinkling factor for flames with Karlovitz numbers much greater than unity. Alternatively, the ratio of the 3D wrinkling factor to its 2D counterpart can provide a reasonable estimate of the 3D fractal dimension for flames in the thin reaction zones regime. The newly derived relations provide an estimation for the value of fractal dimension in the limit of high Karlovitz number using an alternative route.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信