Matthew Nowruzi, Samuel Baker, Felix Leach, Xiaohang Fang
{"title":"用于捕获流场变化的数值度量:对向量场鲁棒比较的改进","authors":"Matthew Nowruzi, Samuel Baker, Felix Leach, Xiaohang Fang","doi":"10.1007/s10494-025-00637-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantifying the similarity of velocity vector fields is a critical task across numerous applications within fluid mechanics research, such as computational fluid dynamics validation and quantifying the levels of variability in a flow field. However, this task remains challenging for widely used vector comparison metrics at present. Traditional metrics include the Relevance Index (RI) and Magnitude Similarity Index (MSI) as well as their local versions, Local Structural Index (LSI) and Local Magnitude Index (LMI). These metrics, however, are often sensitive to low-velocity magnitude areas, which can distort the results. To address this, improved metrics like the Weighted Relevance Index (WRI), the Weighted Magnitude Index (WMI), and their amalgamated Combined Magnitude And Relevance Index (CMRI), have been introduced in the literature. Despite having reduced sensitivity to low-velocity areas, CMRI in its original form does not equally consider the significance of WRI and WMI, and introduces a degree of subjectivity. In the present work, we propose two enhanced metrics to address this problem: the modified CMRI for one-by-one flow field comparison, and the ensemble CMRI for comparing collections of vector fields. We compare their properties to the previously developed CMRI and spatially averaged CMRI, and investigate their usage in an applied example for quantifying cyclic variations in a flow from a combustion engine cylinder. The newly proposed metrics were found to more robustly isolate the effects of discrepant vector magnitudes and directions, leading to improved diagnostics of in-cylinder flow fields. In particular, the modified CMRI, which ensures equal treatment of WMI and WRI, can serve as a baseline for flow field comparison, providing a more objective target for quantifying flow similarity.\n</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"739 - 762"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numeric Metrics for Capturing Variations in Flow Fields: An Improvement Towards a Robust Comparison of Vector Fields\",\"authors\":\"Matthew Nowruzi, Samuel Baker, Felix Leach, Xiaohang Fang\",\"doi\":\"10.1007/s10494-025-00637-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantifying the similarity of velocity vector fields is a critical task across numerous applications within fluid mechanics research, such as computational fluid dynamics validation and quantifying the levels of variability in a flow field. However, this task remains challenging for widely used vector comparison metrics at present. Traditional metrics include the Relevance Index (RI) and Magnitude Similarity Index (MSI) as well as their local versions, Local Structural Index (LSI) and Local Magnitude Index (LMI). These metrics, however, are often sensitive to low-velocity magnitude areas, which can distort the results. To address this, improved metrics like the Weighted Relevance Index (WRI), the Weighted Magnitude Index (WMI), and their amalgamated Combined Magnitude And Relevance Index (CMRI), have been introduced in the literature. Despite having reduced sensitivity to low-velocity areas, CMRI in its original form does not equally consider the significance of WRI and WMI, and introduces a degree of subjectivity. In the present work, we propose two enhanced metrics to address this problem: the modified CMRI for one-by-one flow field comparison, and the ensemble CMRI for comparing collections of vector fields. We compare their properties to the previously developed CMRI and spatially averaged CMRI, and investigate their usage in an applied example for quantifying cyclic variations in a flow from a combustion engine cylinder. The newly proposed metrics were found to more robustly isolate the effects of discrepant vector magnitudes and directions, leading to improved diagnostics of in-cylinder flow fields. In particular, the modified CMRI, which ensures equal treatment of WMI and WRI, can serve as a baseline for flow field comparison, providing a more objective target for quantifying flow similarity.\\n</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"115 2\",\"pages\":\"739 - 762\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-025-00637-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00637-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Numeric Metrics for Capturing Variations in Flow Fields: An Improvement Towards a Robust Comparison of Vector Fields
Quantifying the similarity of velocity vector fields is a critical task across numerous applications within fluid mechanics research, such as computational fluid dynamics validation and quantifying the levels of variability in a flow field. However, this task remains challenging for widely used vector comparison metrics at present. Traditional metrics include the Relevance Index (RI) and Magnitude Similarity Index (MSI) as well as their local versions, Local Structural Index (LSI) and Local Magnitude Index (LMI). These metrics, however, are often sensitive to low-velocity magnitude areas, which can distort the results. To address this, improved metrics like the Weighted Relevance Index (WRI), the Weighted Magnitude Index (WMI), and their amalgamated Combined Magnitude And Relevance Index (CMRI), have been introduced in the literature. Despite having reduced sensitivity to low-velocity areas, CMRI in its original form does not equally consider the significance of WRI and WMI, and introduces a degree of subjectivity. In the present work, we propose two enhanced metrics to address this problem: the modified CMRI for one-by-one flow field comparison, and the ensemble CMRI for comparing collections of vector fields. We compare their properties to the previously developed CMRI and spatially averaged CMRI, and investigate their usage in an applied example for quantifying cyclic variations in a flow from a combustion engine cylinder. The newly proposed metrics were found to more robustly isolate the effects of discrepant vector magnitudes and directions, leading to improved diagnostics of in-cylinder flow fields. In particular, the modified CMRI, which ensures equal treatment of WMI and WRI, can serve as a baseline for flow field comparison, providing a more objective target for quantifying flow similarity.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.