广义Yamabe流

IF 1.6 3区 数学 Q1 MATHEMATICS
Jørgen Olsen Lye, Boris Vertman, Mannaim Gennaro Vitti
{"title":"广义Yamabe流","authors":"Jørgen Olsen Lye,&nbsp;Boris Vertman,&nbsp;Mannaim Gennaro Vitti","doi":"10.1007/s13324-025-01121-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we introduce a family of conformal flows generalizing the classical Yamabe flow. We prove that for a large class of such flows long-time existence holds, and the arguments are in fact simpler than in the classical case. Moreover, we establish convergence for the case of negative scalar curvature and expect a similar statement for the positive and the flat cases as well.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01121-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Yamabe Flows\",\"authors\":\"Jørgen Olsen Lye,&nbsp;Boris Vertman,&nbsp;Mannaim Gennaro Vitti\",\"doi\":\"10.1007/s13324-025-01121-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we introduce a family of conformal flows generalizing the classical Yamabe flow. We prove that for a large class of such flows long-time existence holds, and the arguments are in fact simpler than in the classical case. Moreover, we establish convergence for the case of negative scalar curvature and expect a similar statement for the positive and the flat cases as well.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01121-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01121-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01121-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了一类共形流,推广了经典的Yamabe流。我们证明了对于一类这样的流长期存在是成立的,而且论证实际上比经典情况更简单。此外,我们建立了负标量曲率情况下的收敛性,并期望在正标量曲率和平面曲率情况下也有类似的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Yamabe Flows

In this work we introduce a family of conformal flows generalizing the classical Yamabe flow. We prove that for a large class of such flows long-time existence holds, and the arguments are in fact simpler than in the classical case. Moreover, we establish convergence for the case of negative scalar curvature and expect a similar statement for the positive and the flat cases as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信