{"title":"宇宙学的极限","authors":"Joseph Silk","doi":"10.1007/s10714-025-03450-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Moon is our future. It may seem like a chimera with a projected cost in excess of 100 billion$, and counting, dispensed on ARTEMIS with little to show to date. However it is the ideal site for the largest telescopes that we can dream about, at wavelengths spanning decimetric radio through optical to terahertz FIR. And it is these future telescopes that will penetrate the fundamental mysteries of the first hydrogen clouds, the first stars, the first galaxies, the first supermassive black holes, and the nearest habitable exoplanets. Nor does it stop there. Our lunar telescopes will take us back to the first months of the Universe, and even back to the first 10<span>\\(^{-36}\\)</span> second after the Big Bang when inflation most likely occurred. Our lunar telescopes will provide high resolution images of exoplanets that are nearby Earth-like ’twins’ and provide an unrivalled attempt to answer the ultimate cosmic question of whether we are alone in the universe. Here I will set out my vision of the case for lunar astronomy over the next several decades.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03450-w.pdf","citationCount":"0","resultStr":"{\"title\":\"The limits of cosmology\",\"authors\":\"Joseph Silk\",\"doi\":\"10.1007/s10714-025-03450-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Moon is our future. It may seem like a chimera with a projected cost in excess of 100 billion$, and counting, dispensed on ARTEMIS with little to show to date. However it is the ideal site for the largest telescopes that we can dream about, at wavelengths spanning decimetric radio through optical to terahertz FIR. And it is these future telescopes that will penetrate the fundamental mysteries of the first hydrogen clouds, the first stars, the first galaxies, the first supermassive black holes, and the nearest habitable exoplanets. Nor does it stop there. Our lunar telescopes will take us back to the first months of the Universe, and even back to the first 10<span>\\\\(^{-36}\\\\)</span> second after the Big Bang when inflation most likely occurred. Our lunar telescopes will provide high resolution images of exoplanets that are nearby Earth-like ’twins’ and provide an unrivalled attempt to answer the ultimate cosmic question of whether we are alone in the universe. Here I will set out my vision of the case for lunar astronomy over the next several decades.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-025-03450-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03450-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03450-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Moon is our future. It may seem like a chimera with a projected cost in excess of 100 billion$, and counting, dispensed on ARTEMIS with little to show to date. However it is the ideal site for the largest telescopes that we can dream about, at wavelengths spanning decimetric radio through optical to terahertz FIR. And it is these future telescopes that will penetrate the fundamental mysteries of the first hydrogen clouds, the first stars, the first galaxies, the first supermassive black holes, and the nearest habitable exoplanets. Nor does it stop there. Our lunar telescopes will take us back to the first months of the Universe, and even back to the first 10\(^{-36}\) second after the Big Bang when inflation most likely occurred. Our lunar telescopes will provide high resolution images of exoplanets that are nearby Earth-like ’twins’ and provide an unrivalled attempt to answer the ultimate cosmic question of whether we are alone in the universe. Here I will set out my vision of the case for lunar astronomy over the next several decades.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.