\(*\) -代数上的非线性混合偏态和\(\eta \) -Jordan导数

Q2 Mathematics
Asma Ali, Shakiv Ali, Mohd Tasleem
{"title":"\\(*\\) -代数上的非线性混合偏态和\\(\\eta \\) -Jordan导数","authors":"Asma Ali,&nbsp;Shakiv Ali,&nbsp;Mohd Tasleem","doi":"10.1007/s11565-025-00608-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathfrak {E}\\)</span> be a unital <span>\\(*\\)</span>-algebra and <span>\\(\\eta \\ne -1\\)</span> be a nonzero scalar. This paper establishes that if a nonlinear mapping <span>\\(\\zeta : \\mathfrak {E} \\rightarrow \\mathfrak {E}\\)</span> satisfies <span>\\( \\zeta (\\mathcal {U} \\bullet \\mathcal {V} \\circ _\\eta \\mathcal {W})=\\zeta (\\mathcal {U}) \\bullet \\mathcal {V} \\circ _\\eta \\mathcal {W}+\\mathcal {U} \\bullet \\zeta (\\mathcal {V}) \\circ _\\eta \\mathcal {W}+\\mathcal {U} \\bullet \\mathcal {V} \\circ _\\eta \\zeta (\\mathcal {W})\\)</span> for all <span>\\( \\mathcal {U}, \\mathcal {V}, \\mathcal {W} \\in \\mathfrak {E}\\)</span>, then <span>\\(\\zeta \\)</span> is an additive <span>\\(*\\)</span>-derivation and fulfils <span>\\(\\zeta (\\eta \\mathcal {U})=\\eta \\zeta (\\mathcal {U})\\)</span> for all <span>\\(\\mathcal {U} \\in \\mathfrak {E}.\\)</span> Additionally, we extend this result to various other algebras.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear mixed skew and \\\\(\\\\eta \\\\)-Jordan derivations on \\\\(*\\\\)-algebras\",\"authors\":\"Asma Ali,&nbsp;Shakiv Ali,&nbsp;Mohd Tasleem\",\"doi\":\"10.1007/s11565-025-00608-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathfrak {E}\\\\)</span> be a unital <span>\\\\(*\\\\)</span>-algebra and <span>\\\\(\\\\eta \\\\ne -1\\\\)</span> be a nonzero scalar. This paper establishes that if a nonlinear mapping <span>\\\\(\\\\zeta : \\\\mathfrak {E} \\\\rightarrow \\\\mathfrak {E}\\\\)</span> satisfies <span>\\\\( \\\\zeta (\\\\mathcal {U} \\\\bullet \\\\mathcal {V} \\\\circ _\\\\eta \\\\mathcal {W})=\\\\zeta (\\\\mathcal {U}) \\\\bullet \\\\mathcal {V} \\\\circ _\\\\eta \\\\mathcal {W}+\\\\mathcal {U} \\\\bullet \\\\zeta (\\\\mathcal {V}) \\\\circ _\\\\eta \\\\mathcal {W}+\\\\mathcal {U} \\\\bullet \\\\mathcal {V} \\\\circ _\\\\eta \\\\zeta (\\\\mathcal {W})\\\\)</span> for all <span>\\\\( \\\\mathcal {U}, \\\\mathcal {V}, \\\\mathcal {W} \\\\in \\\\mathfrak {E}\\\\)</span>, then <span>\\\\(\\\\zeta \\\\)</span> is an additive <span>\\\\(*\\\\)</span>-derivation and fulfils <span>\\\\(\\\\zeta (\\\\eta \\\\mathcal {U})=\\\\eta \\\\zeta (\\\\mathcal {U})\\\\)</span> for all <span>\\\\(\\\\mathcal {U} \\\\in \\\\mathfrak {E}.\\\\)</span> Additionally, we extend this result to various other algebras.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00608-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00608-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathfrak {E}\)为一元\(*\) -代数,\(\eta \ne -1\)为非零标量。建立了如果一个非线性映射\(\zeta : \mathfrak {E} \rightarrow \mathfrak {E}\)对所有\( \mathcal {U}, \mathcal {V}, \mathcal {W} \in \mathfrak {E}\)都满足\( \zeta (\mathcal {U} \bullet \mathcal {V} \circ _\eta \mathcal {W})=\zeta (\mathcal {U}) \bullet \mathcal {V} \circ _\eta \mathcal {W}+\mathcal {U} \bullet \zeta (\mathcal {V}) \circ _\eta \mathcal {W}+\mathcal {U} \bullet \mathcal {V} \circ _\eta \zeta (\mathcal {W})\),则\(\zeta \)是一个可加的\(*\) -导数,并且对所有\(\mathcal {U} \in \mathfrak {E}.\)都满足\(\zeta (\eta \mathcal {U})=\eta \zeta (\mathcal {U})\)。此外,我们将这一结果推广到其他各种代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear mixed skew and \(\eta \)-Jordan derivations on \(*\)-algebras

Let \(\mathfrak {E}\) be a unital \(*\)-algebra and \(\eta \ne -1\) be a nonzero scalar. This paper establishes that if a nonlinear mapping \(\zeta : \mathfrak {E} \rightarrow \mathfrak {E}\) satisfies \( \zeta (\mathcal {U} \bullet \mathcal {V} \circ _\eta \mathcal {W})=\zeta (\mathcal {U}) \bullet \mathcal {V} \circ _\eta \mathcal {W}+\mathcal {U} \bullet \zeta (\mathcal {V}) \circ _\eta \mathcal {W}+\mathcal {U} \bullet \mathcal {V} \circ _\eta \zeta (\mathcal {W})\) for all \( \mathcal {U}, \mathcal {V}, \mathcal {W} \in \mathfrak {E}\), then \(\zeta \) is an additive \(*\)-derivation and fulfils \(\zeta (\eta \mathcal {U})=\eta \zeta (\mathcal {U})\) for all \(\mathcal {U} \in \mathfrak {E}.\) Additionally, we extend this result to various other algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信