{"title":"用数字量子退火方法求解电动汽车充电站最优布局问题","authors":"Chia-Ho Ou;Chung-Chieh Cheng;Chih-Yu Chen;Krischonme Bhumkittipich;Sillawat Romphochai","doi":"10.23919/JCN.2025.000048","DOIUrl":null,"url":null,"abstract":"It is imperative to reduce carbon dioxide emissions and fossil fuel consumption to ensure the Earth's sustainable future and mitigate negative impacts like extreme climate changes caused by greenhouse gases. Electric vehicles (EVs) play a pivotal role in this context, where the convenience of charging stations is crucial in influencing consumer choices. This paper formulates the placement of charging stations as an optimization problem, considering factors like station density, accessibility, coverage, and regional cost variations, to minimize total construction costs. The problem is mapped onto a quadratic unconstrained binary optimization (QUBO) model. The QUBO can efficiently represent and solve complex combinatorial optimization problems, making it suitable for quantum and advanced classical algorithms. Utilizing digital quantum annealing, the optimal or near-optimal solutions are efficiently identified. The performance of the proposed approach is compared with classical algorithms, including mixed linear programming and simulated annealing, demonstrating significant advancements of digital annealing.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"27 4","pages":"252-263"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142623","citationCount":"0","resultStr":"{\"title\":\"Solving optimal electric vehicle charging station placement problem using digital quantum annealing\",\"authors\":\"Chia-Ho Ou;Chung-Chieh Cheng;Chih-Yu Chen;Krischonme Bhumkittipich;Sillawat Romphochai\",\"doi\":\"10.23919/JCN.2025.000048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is imperative to reduce carbon dioxide emissions and fossil fuel consumption to ensure the Earth's sustainable future and mitigate negative impacts like extreme climate changes caused by greenhouse gases. Electric vehicles (EVs) play a pivotal role in this context, where the convenience of charging stations is crucial in influencing consumer choices. This paper formulates the placement of charging stations as an optimization problem, considering factors like station density, accessibility, coverage, and regional cost variations, to minimize total construction costs. The problem is mapped onto a quadratic unconstrained binary optimization (QUBO) model. The QUBO can efficiently represent and solve complex combinatorial optimization problems, making it suitable for quantum and advanced classical algorithms. Utilizing digital quantum annealing, the optimal or near-optimal solutions are efficiently identified. The performance of the proposed approach is compared with classical algorithms, including mixed linear programming and simulated annealing, demonstrating significant advancements of digital annealing.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":\"27 4\",\"pages\":\"252-263\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142623\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11142623/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11142623/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Solving optimal electric vehicle charging station placement problem using digital quantum annealing
It is imperative to reduce carbon dioxide emissions and fossil fuel consumption to ensure the Earth's sustainable future and mitigate negative impacts like extreme climate changes caused by greenhouse gases. Electric vehicles (EVs) play a pivotal role in this context, where the convenience of charging stations is crucial in influencing consumer choices. This paper formulates the placement of charging stations as an optimization problem, considering factors like station density, accessibility, coverage, and regional cost variations, to minimize total construction costs. The problem is mapped onto a quadratic unconstrained binary optimization (QUBO) model. The QUBO can efficiently represent and solve complex combinatorial optimization problems, making it suitable for quantum and advanced classical algorithms. Utilizing digital quantum annealing, the optimal or near-optimal solutions are efficiently identified. The performance of the proposed approach is compared with classical algorithms, including mixed linear programming and simulated annealing, demonstrating significant advancements of digital annealing.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.