曲线族的有理点和奇异点

IF 1.3 Q2 MATHEMATICS, APPLIED
M.C. Rodríguez-Palánquex
{"title":"曲线族的有理点和奇异点","authors":"M.C. Rodríguez-Palánquex","doi":"10.1016/j.rinam.2025.100630","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the properties of a family of absolutely irreducible projective plane curves, denoted <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, which are defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> of characteristic 2. The curves are explicitly given by the homogeneous equation <span><math><mrow><msup><mrow><mi>Y</mi></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>Z</mi></mrow><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></msup><mo>+</mo><mi>Y</mi><msup><mrow><mi>Z</mi></mrow><mrow><mi>b</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> are natural numbers satisfying the conditions <span><math><mrow><mi>a</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>≥</mo><mi>a</mi></mrow></math></span>. A primary objective of the paper is to determine the number of rational points on these curves.</div><div>The work also includes a detailed analysis of the singular points of the curves, providing a classification of these points based on the parameters <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>. Furthermore, the relationship between the number of rational points and the genus of the curves is investigated, with specific computations carried out for curves defined over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></msub></math></span>. In particular, the paper presents explicit calculations of the number of rational points for curves of the form <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></msub></math></span>, illustrating the connection between these counts and the genus of the curves.</div><div>This comprehensive analysis contributes to a deeper understanding of the arithmetic geometry of this family of curves over finite fields.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100630"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational and singular points of a family of curves\",\"authors\":\"M.C. Rodríguez-Palánquex\",\"doi\":\"10.1016/j.rinam.2025.100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the properties of a family of absolutely irreducible projective plane curves, denoted <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, which are defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> of characteristic 2. The curves are explicitly given by the homogeneous equation <span><math><mrow><msup><mrow><mi>Y</mi></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>Z</mi></mrow><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></msup><mo>+</mo><mi>Y</mi><msup><mrow><mi>Z</mi></mrow><mrow><mi>b</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> are natural numbers satisfying the conditions <span><math><mrow><mi>a</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>≥</mo><mi>a</mi></mrow></math></span>. A primary objective of the paper is to determine the number of rational points on these curves.</div><div>The work also includes a detailed analysis of the singular points of the curves, providing a classification of these points based on the parameters <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>. Furthermore, the relationship between the number of rational points and the genus of the curves is investigated, with specific computations carried out for curves defined over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></msub></math></span>. In particular, the paper presents explicit calculations of the number of rational points for curves of the form <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></msub></math></span>, illustrating the connection between these counts and the genus of the curves.</div><div>This comprehensive analysis contributes to a deeper understanding of the arithmetic geometry of this family of curves over finite fields.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100630\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了在特征为2的有限域Fm上定义的绝对不可约平面投影曲线族Ca,b的性质。曲线由齐次方程YaZb−a+YZb−1+Xb=0显式给出,其中a和b是满足条件a≥2和b≥a的自然数。本文的主要目的是确定这些曲线上有理点的个数。该工作还包括对曲线奇异点的详细分析,提供了基于参数a和b的这些点的分类。此外,研究了有理点数量与曲线属数之间的关系,并对有限域F24上定义的曲线进行了具体计算。特别地,本文给出了形式为C2,b和C3,b / F24的曲线的有理点的数目的显式计算,并说明了这些数目与曲线的属之间的联系。这种全面的分析有助于对有限域上这类曲线的算术几何有更深的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational and singular points of a family of curves
This paper explores the properties of a family of absolutely irreducible projective plane curves, denoted Ca,b, which are defined over a finite field Fm of characteristic 2. The curves are explicitly given by the homogeneous equation YaZba+YZb1+Xb=0, where a and b are natural numbers satisfying the conditions a2 and ba. A primary objective of the paper is to determine the number of rational points on these curves.
The work also includes a detailed analysis of the singular points of the curves, providing a classification of these points based on the parameters a and b. Furthermore, the relationship between the number of rational points and the genus of the curves is investigated, with specific computations carried out for curves defined over the finite field F24. In particular, the paper presents explicit calculations of the number of rational points for curves of the form C2,b and C3,b over F24, illustrating the connection between these counts and the genus of the curves.
This comprehensive analysis contributes to a deeper understanding of the arithmetic geometry of this family of curves over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信