J. Noyola Rodriguez , Cynthia G. Esquer-Pérez , J.C. Hernández-Gómez , Omar Rosario Cayetano
{"title":"广义gKdV-4方程的光滑孤立波","authors":"J. Noyola Rodriguez , Cynthia G. Esquer-Pérez , J.C. Hernández-Gómez , Omar Rosario Cayetano","doi":"10.1016/j.rinam.2025.100625","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a generalization of KdV-type equations with a quartic nonlinearity <span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> (gKdV-4), which includes dissipation terms similar to those appearing in the Benjamin-Bona-Mahoney equation as well as in the well-known Camassa–Holm and Degasperis-Procesi equations. Our objective is to construct classical solitary wave solutions (solitons-antisolitons) to this equation.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100625"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth solitary waves for the generalized gKdV-4 equation\",\"authors\":\"J. Noyola Rodriguez , Cynthia G. Esquer-Pérez , J.C. Hernández-Gómez , Omar Rosario Cayetano\",\"doi\":\"10.1016/j.rinam.2025.100625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a generalization of KdV-type equations with a quartic nonlinearity <span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> (gKdV-4), which includes dissipation terms similar to those appearing in the Benjamin-Bona-Mahoney equation as well as in the well-known Camassa–Holm and Degasperis-Procesi equations. Our objective is to construct classical solitary wave solutions (solitons-antisolitons) to this equation.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100625\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Smooth solitary waves for the generalized gKdV-4 equation
We consider a generalization of KdV-type equations with a quartic nonlinearity (gKdV-4), which includes dissipation terms similar to those appearing in the Benjamin-Bona-Mahoney equation as well as in the well-known Camassa–Holm and Degasperis-Procesi equations. Our objective is to construct classical solitary wave solutions (solitons-antisolitons) to this equation.