{"title":"铬基低熵、中熵和高熵尖晶石氧化物的介电性能","authors":"Sushanta Mandal, Tirthankar Chakraborty, Sourav Marik","doi":"10.1016/j.solidstatesciences.2025.108020","DOIUrl":null,"url":null,"abstract":"<div><div>Entropy stabilizes oxides, a new area of materials research promises special qualities because of their configurational entropy. In this work, we studied chromium-based spinel oxides with different compositional entropies from low entropy <span><math><mrow><mrow><mo>(</mo><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mtext>Mn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mtext>Cr</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> to high entropy oxides <span><math><mrow><mrow><mo>(</mo><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Mn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Zn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mtext>Cr</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> systems to explore their microstructural, dielectric, and electrical characteristics. The XRD analysis reveals that with increasing entropy, no systematic trend is observed in crystallite size, microstrain, or dislocation density, indicating a complex structural evolution. The non-linear dielectric behavior of chromium-based spinel oxides has been demonstrated through an analysis of the real dielectric constant and tangent loss by the modified Debye model. This study reveals that the dielectric properties concurrently enhance as configurational entropy increases systematically from low to high in chromium-based oxides. The high entropy sample shows better dielectric constants and reduced tangent loss, which can be ascribed to the combined effects of multi-element effects and greater ion mobility. The interfacial polarization hypothesis proposed by Maxwell and Wagner has been utilized to comprehend the behavior of dielectric constants. The detailed investigation of dielectric properties might be beneficial for electrical and electrochemical applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"168 ","pages":"Article 108020"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric properties of chromium-based low entropy, medium entropy, and high entropy spinel oxides\",\"authors\":\"Sushanta Mandal, Tirthankar Chakraborty, Sourav Marik\",\"doi\":\"10.1016/j.solidstatesciences.2025.108020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Entropy stabilizes oxides, a new area of materials research promises special qualities because of their configurational entropy. In this work, we studied chromium-based spinel oxides with different compositional entropies from low entropy <span><math><mrow><mrow><mo>(</mo><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mtext>Mn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mtext>Cr</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> to high entropy oxides <span><math><mrow><mrow><mo>(</mo><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Mn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><msub><mrow><mtext>Zn</mtext></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mtext>Cr</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> systems to explore their microstructural, dielectric, and electrical characteristics. The XRD analysis reveals that with increasing entropy, no systematic trend is observed in crystallite size, microstrain, or dislocation density, indicating a complex structural evolution. The non-linear dielectric behavior of chromium-based spinel oxides has been demonstrated through an analysis of the real dielectric constant and tangent loss by the modified Debye model. This study reveals that the dielectric properties concurrently enhance as configurational entropy increases systematically from low to high in chromium-based oxides. The high entropy sample shows better dielectric constants and reduced tangent loss, which can be ascribed to the combined effects of multi-element effects and greater ion mobility. The interfacial polarization hypothesis proposed by Maxwell and Wagner has been utilized to comprehend the behavior of dielectric constants. The detailed investigation of dielectric properties might be beneficial for electrical and electrochemical applications.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"168 \",\"pages\":\"Article 108020\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255825001980\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825001980","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Dielectric properties of chromium-based low entropy, medium entropy, and high entropy spinel oxides
Entropy stabilizes oxides, a new area of materials research promises special qualities because of their configurational entropy. In this work, we studied chromium-based spinel oxides with different compositional entropies from low entropy to high entropy oxides systems to explore their microstructural, dielectric, and electrical characteristics. The XRD analysis reveals that with increasing entropy, no systematic trend is observed in crystallite size, microstrain, or dislocation density, indicating a complex structural evolution. The non-linear dielectric behavior of chromium-based spinel oxides has been demonstrated through an analysis of the real dielectric constant and tangent loss by the modified Debye model. This study reveals that the dielectric properties concurrently enhance as configurational entropy increases systematically from low to high in chromium-based oxides. The high entropy sample shows better dielectric constants and reduced tangent loss, which can be ascribed to the combined effects of multi-element effects and greater ion mobility. The interfacial polarization hypothesis proposed by Maxwell and Wagner has been utilized to comprehend the behavior of dielectric constants. The detailed investigation of dielectric properties might be beneficial for electrical and electrochemical applications.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.