火星风化层烧结的综合优化:在矿物学复制模拟物中裁剪微观结构和性能

IF 3.4 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
Yutong Deng, Feng Li, Siqi Zhou, Xinyang Tao, Qi Zhou, Qinxin Feng
{"title":"火星风化层烧结的综合优化:在矿物学复制模拟物中裁剪微观结构和性能","authors":"Yutong Deng,&nbsp;Feng Li,&nbsp;Siqi Zhou,&nbsp;Xinyang Tao,&nbsp;Qi Zhou,&nbsp;Qinxin Feng","doi":"10.1016/j.actaastro.2025.08.038","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging in-situ resource utilization (ISRU) to enable sustainable construction on Mars critically depends on understanding the inherent heterogeneity in particle size distribution and mineral composition of Martian soil. This study explores the vacuum sintering dynamics for mineralogically replicated BH-Mars-S simulant, unraveling the intricate interplay between granulometric characteristics and thermal processing parameters (1175–1250°C). Through comparative analysis of two distinct particle systems - fine (d<sub>50</sub> ≈ 12.7 μm) versus coarse (d<sub>50</sub> ≈ 127 μm) fractions - a remarkable 102 % enhancement in densification efficiency and 300 % enhancement in compressive strength was demonstrated through particle size optimization. Detailed microstructural investigations reveal that densification predominantly occurs via liquid-phase mechanisms facilitated by selective melting of plagioclase and pyroxene, while olivine and chromite maintain structural stability throughout the process. Particularly noteworthy is the precise control of sintering conditions, which also allows for modulation of thermal conductivity, providing additional design flexibility for Martian infrastructure. The study articulates a refined mineral-specific sintering mechanism, offering a comprehensive framework for optimizing the mechanical and thermal performance of regolith-based building materials for future Mars exploration.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"237 ","pages":"Pages 224-235"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated optimization of Martian regolith Sintering: Tailoring microstructure and performance in a mineralogically replicated simulant\",\"authors\":\"Yutong Deng,&nbsp;Feng Li,&nbsp;Siqi Zhou,&nbsp;Xinyang Tao,&nbsp;Qi Zhou,&nbsp;Qinxin Feng\",\"doi\":\"10.1016/j.actaastro.2025.08.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leveraging in-situ resource utilization (ISRU) to enable sustainable construction on Mars critically depends on understanding the inherent heterogeneity in particle size distribution and mineral composition of Martian soil. This study explores the vacuum sintering dynamics for mineralogically replicated BH-Mars-S simulant, unraveling the intricate interplay between granulometric characteristics and thermal processing parameters (1175–1250°C). Through comparative analysis of two distinct particle systems - fine (d<sub>50</sub> ≈ 12.7 μm) versus coarse (d<sub>50</sub> ≈ 127 μm) fractions - a remarkable 102 % enhancement in densification efficiency and 300 % enhancement in compressive strength was demonstrated through particle size optimization. Detailed microstructural investigations reveal that densification predominantly occurs via liquid-phase mechanisms facilitated by selective melting of plagioclase and pyroxene, while olivine and chromite maintain structural stability throughout the process. Particularly noteworthy is the precise control of sintering conditions, which also allows for modulation of thermal conductivity, providing additional design flexibility for Martian infrastructure. The study articulates a refined mineral-specific sintering mechanism, offering a comprehensive framework for optimizing the mechanical and thermal performance of regolith-based building materials for future Mars exploration.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"237 \",\"pages\":\"Pages 224-235\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525005399\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525005399","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

利用原位资源利用(ISRU)在火星上实现可持续建设,关键取决于了解火星土壤粒度分布和矿物组成的内在异质性。本研究探讨了矿物学复制的BH-Mars-S模拟物的真空烧结动力学,揭示了粒度特征与热处理参数(1175-1250°C)之间复杂的相互作用。通过对细粒(d50≈12.7 μm)和粗粒(d50≈127 μm)两种不同颗粒体系的对比分析,表明优化颗粒尺寸可使致密化效率提高102%,抗压强度提高300%。详细的显微结构研究表明,致密化主要通过斜长石和辉石的选择性熔融液相机制发生,而橄榄石和铬铁矿在整个过程中保持结构稳定。特别值得注意的是对烧结条件的精确控制,这也允许调节导热性,为火星基础设施提供额外的设计灵活性。该研究阐明了一种精细的矿物特定烧结机制,为优化未来火星探测的风化层基建筑材料的机械和热性能提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated optimization of Martian regolith Sintering: Tailoring microstructure and performance in a mineralogically replicated simulant
Leveraging in-situ resource utilization (ISRU) to enable sustainable construction on Mars critically depends on understanding the inherent heterogeneity in particle size distribution and mineral composition of Martian soil. This study explores the vacuum sintering dynamics for mineralogically replicated BH-Mars-S simulant, unraveling the intricate interplay between granulometric characteristics and thermal processing parameters (1175–1250°C). Through comparative analysis of two distinct particle systems - fine (d50 ≈ 12.7 μm) versus coarse (d50 ≈ 127 μm) fractions - a remarkable 102 % enhancement in densification efficiency and 300 % enhancement in compressive strength was demonstrated through particle size optimization. Detailed microstructural investigations reveal that densification predominantly occurs via liquid-phase mechanisms facilitated by selective melting of plagioclase and pyroxene, while olivine and chromite maintain structural stability throughout the process. Particularly noteworthy is the precise control of sintering conditions, which also allows for modulation of thermal conductivity, providing additional design flexibility for Martian infrastructure. The study articulates a refined mineral-specific sintering mechanism, offering a comprehensive framework for optimizing the mechanical and thermal performance of regolith-based building materials for future Mars exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信