定义问题:OCR质量对检索增强生成性能的影响和改进策略

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Minchae Song
{"title":"定义问题:OCR质量对检索增强生成性能的影响和改进策略","authors":"Minchae Song","doi":"10.1016/j.ipm.2025.104368","DOIUrl":null,"url":null,"abstract":"<div><div>Despite considerable progress in Retrieval-Augmented Generation (RAG) and Optical Character Recognition (OCR) technologies, only a limited amount of research has examined how OCR-derived data influences RAG performance. Thus, this study presents a document-based question-answering dataset derived from unstructured image documents across financial domains and investigates the impact of OCR-generated data on RAG outcomes. Although high OCR accuracy was achieved, especially for handwritten content, using raw OCR outputs directly in the RAG substantially increased the error rates. To address this, we propose a simple yet effective method of transforming OCR outputs into a structured tabular format, with the results showing a marked improvement in RAG performance without altering the OCR quality. The approach proved robust in correcting OCR errors, representing data in structured formats, and integrating alternative retriever and reranker techniques, and highlighted that RAG performance is more sensitive to the structure of input data than to OCR accuracy alone. This study presents a practical solution for optimizing RAG systems by utilizing structured representations of OCR-extracted data, thereby providing new insights for integrating OCR and RAG.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104368"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining the problem: The impact of OCR quality on retrieval-augmented generation performance and strategies for improvement\",\"authors\":\"Minchae Song\",\"doi\":\"10.1016/j.ipm.2025.104368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite considerable progress in Retrieval-Augmented Generation (RAG) and Optical Character Recognition (OCR) technologies, only a limited amount of research has examined how OCR-derived data influences RAG performance. Thus, this study presents a document-based question-answering dataset derived from unstructured image documents across financial domains and investigates the impact of OCR-generated data on RAG outcomes. Although high OCR accuracy was achieved, especially for handwritten content, using raw OCR outputs directly in the RAG substantially increased the error rates. To address this, we propose a simple yet effective method of transforming OCR outputs into a structured tabular format, with the results showing a marked improvement in RAG performance without altering the OCR quality. The approach proved robust in correcting OCR errors, representing data in structured formats, and integrating alternative retriever and reranker techniques, and highlighted that RAG performance is more sensitive to the structure of input data than to OCR accuracy alone. This study presents a practical solution for optimizing RAG systems by utilizing structured representations of OCR-extracted data, thereby providing new insights for integrating OCR and RAG.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104368\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325003097\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325003097","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管检索增强生成(RAG)和光学字符识别(OCR)技术取得了相当大的进展,但只有有限的研究研究了OCR衍生数据如何影响RAG性能。因此,本研究提出了一个基于文档的问答数据集,该数据集来自跨金融领域的非结构化图像文档,并调查了ocr生成的数据对RAG结果的影响。虽然实现了很高的OCR精度,特别是对于手写内容,但直接在RAG中使用原始OCR输出大大增加了错误率。为了解决这个问题,我们提出了一种简单而有效的方法,将OCR输出转换为结构化表格格式,结果显示在不改变OCR质量的情况下,RAG性能有了显着改善。该方法在纠正OCR错误、以结构化格式表示数据以及集成替代检索器和重新排序器技术方面证明了鲁棒性,并强调RAG性能对输入数据的结构比单独的OCR精度更敏感。本研究提出了一种实用的解决方案,通过利用OCR提取数据的结构化表示来优化RAG系统,从而为集成OCR和RAG提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining the problem: The impact of OCR quality on retrieval-augmented generation performance and strategies for improvement
Despite considerable progress in Retrieval-Augmented Generation (RAG) and Optical Character Recognition (OCR) technologies, only a limited amount of research has examined how OCR-derived data influences RAG performance. Thus, this study presents a document-based question-answering dataset derived from unstructured image documents across financial domains and investigates the impact of OCR-generated data on RAG outcomes. Although high OCR accuracy was achieved, especially for handwritten content, using raw OCR outputs directly in the RAG substantially increased the error rates. To address this, we propose a simple yet effective method of transforming OCR outputs into a structured tabular format, with the results showing a marked improvement in RAG performance without altering the OCR quality. The approach proved robust in correcting OCR errors, representing data in structured formats, and integrating alternative retriever and reranker techniques, and highlighted that RAG performance is more sensitive to the structure of input data than to OCR accuracy alone. This study presents a practical solution for optimizing RAG systems by utilizing structured representations of OCR-extracted data, thereby providing new insights for integrating OCR and RAG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信