具有双向层间滑移的三维组合梁的有效共转公式

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Yassir Wardi, Pisey Keo, Mohammed Hjiaj
{"title":"具有双向层间滑移的三维组合梁的有效共转公式","authors":"Yassir Wardi,&nbsp;Pisey Keo,&nbsp;Mohammed Hjiaj","doi":"10.1016/j.finel.2025.104432","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a novel 3D nonlinear formulation for two-layered composite beams that accounts for interlayer slip in both longitudinal and lateral directions. Warping effects are included in a simplified manner, assuming that the warping of each layer does not contribute to the stress resultants of each section, allowing the use of the classical St. Venant warping function to define the warping shape of each subsection. The second-order approximation of the Green–Lagrange strain tensor, combined with linear constitutive laws, is integrated into the principle of virtual work to derive the tangent stiffness matrix of the composite element and its corresponding internal force. To address membrane and slip locking issues, we propose a new averaging strain technique, complemented by quadratic interpolation functions for the axial displacement of the two layers. To account for large displacements and rotations, the co-rotational approach is adopted. The co-rotated local reference frame is constructed by connecting end nodes located at the shear center of the bottom layer of the composite beam. As a result, special treatments are employed to address eccentric forces applied to the top layer of the composite beam. Finally, the performance of the proposed formulation is evaluated using four representative examples.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104432"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient co-rotational formulation for 3D composite beams with two-directional interlayer slip\",\"authors\":\"Yassir Wardi,&nbsp;Pisey Keo,&nbsp;Mohammed Hjiaj\",\"doi\":\"10.1016/j.finel.2025.104432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a novel 3D nonlinear formulation for two-layered composite beams that accounts for interlayer slip in both longitudinal and lateral directions. Warping effects are included in a simplified manner, assuming that the warping of each layer does not contribute to the stress resultants of each section, allowing the use of the classical St. Venant warping function to define the warping shape of each subsection. The second-order approximation of the Green–Lagrange strain tensor, combined with linear constitutive laws, is integrated into the principle of virtual work to derive the tangent stiffness matrix of the composite element and its corresponding internal force. To address membrane and slip locking issues, we propose a new averaging strain technique, complemented by quadratic interpolation functions for the axial displacement of the two layers. To account for large displacements and rotations, the co-rotational approach is adopted. The co-rotated local reference frame is constructed by connecting end nodes located at the shear center of the bottom layer of the composite beam. As a result, special treatments are employed to address eccentric forces applied to the top layer of the composite beam. Finally, the performance of the proposed formulation is evaluated using four representative examples.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"251 \",\"pages\":\"Article 104432\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25001210\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个新的三维非线性公式的两层组合梁,考虑层间滑移在纵向和横向方向。假设每一层的翘曲不影响每个部分的应力结果,以简化的方式包括翘曲效果,允许使用经典的St. Venant翘曲函数来定义每个分段的翘曲形状。将格林-拉格朗日应变张量的二阶近似,结合线性本构定律,与虚功原理相结合,导出复合单元的切向刚度矩阵及其对应的内力。为了解决膜和滑移锁紧问题,我们提出了一种新的平均应变技术,并辅以两层轴向位移的二次插值函数。为了考虑较大的位移和旋转,采用了共旋转方法。通过连接位于组合梁底层剪切中心的端节点来构建共旋转局部参考框架。因此,采用特殊处理来解决施加在复合梁顶层的偏心力。最后,用四个代表性的例子对所提公式的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient co-rotational formulation for 3D composite beams with two-directional interlayer slip
In this paper, we present a novel 3D nonlinear formulation for two-layered composite beams that accounts for interlayer slip in both longitudinal and lateral directions. Warping effects are included in a simplified manner, assuming that the warping of each layer does not contribute to the stress resultants of each section, allowing the use of the classical St. Venant warping function to define the warping shape of each subsection. The second-order approximation of the Green–Lagrange strain tensor, combined with linear constitutive laws, is integrated into the principle of virtual work to derive the tangent stiffness matrix of the composite element and its corresponding internal force. To address membrane and slip locking issues, we propose a new averaging strain technique, complemented by quadratic interpolation functions for the axial displacement of the two layers. To account for large displacements and rotations, the co-rotational approach is adopted. The co-rotated local reference frame is constructed by connecting end nodes located at the shear center of the bottom layer of the composite beam. As a result, special treatments are employed to address eccentric forces applied to the top layer of the composite beam. Finally, the performance of the proposed formulation is evaluated using four representative examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信