网格计算联合作业调度和数据分配的可选混合整数线性规划优化

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Shengyu Feng , Jaehyung Kim , Yiming Yang , Joseph Boudreau , Tasnuva Chowdhury , Adolfy Hoisie , Raees Khan , Ozgur O. Kilic , Scott Klasky , Tatiana Korchuganova , Paul Nilsson , Verena Ingrid Martinez Outschoorn , David K. Park , Norbert Podhorszki , Yihui Ren , Frédéric Suter , Sairam Sri Vatsavai , Wei Yang , Shinjae Yoo , Tadashi Maeno , Alexei Klimentov
{"title":"网格计算联合作业调度和数据分配的可选混合整数线性规划优化","authors":"Shengyu Feng ,&nbsp;Jaehyung Kim ,&nbsp;Yiming Yang ,&nbsp;Joseph Boudreau ,&nbsp;Tasnuva Chowdhury ,&nbsp;Adolfy Hoisie ,&nbsp;Raees Khan ,&nbsp;Ozgur O. Kilic ,&nbsp;Scott Klasky ,&nbsp;Tatiana Korchuganova ,&nbsp;Paul Nilsson ,&nbsp;Verena Ingrid Martinez Outschoorn ,&nbsp;David K. Park ,&nbsp;Norbert Podhorszki ,&nbsp;Yihui Ren ,&nbsp;Frédéric Suter ,&nbsp;Sairam Sri Vatsavai ,&nbsp;Wei Yang ,&nbsp;Shinjae Yoo ,&nbsp;Tadashi Maeno ,&nbsp;Alexei Klimentov","doi":"10.1016/j.future.2025.108075","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach to the joint optimization of job scheduling and data allocation in grid computing environments. We formulate this joint optimization problem as a mixed integer quadratically constrained program. To tackle the nonlinearity in the constraint, we alternatively fix a subset of decision variables and optimize the remaining ones via Mixed Integer Linear Programming (MILP). We solve the MILP problem at each iteration via an off-the-shelf MILP solver. Our experimental results show that our method significantly outperforms existing heuristic methods, employing either independent optimization or joint optimization strategies. We have also verified the generalization ability of our method over grid environments with various sizes and its high robustness to the algorithm setting.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"175 ","pages":"Article 108075"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative mixed integer linear programming optimization for joint job scheduling and data allocation in grid computing\",\"authors\":\"Shengyu Feng ,&nbsp;Jaehyung Kim ,&nbsp;Yiming Yang ,&nbsp;Joseph Boudreau ,&nbsp;Tasnuva Chowdhury ,&nbsp;Adolfy Hoisie ,&nbsp;Raees Khan ,&nbsp;Ozgur O. Kilic ,&nbsp;Scott Klasky ,&nbsp;Tatiana Korchuganova ,&nbsp;Paul Nilsson ,&nbsp;Verena Ingrid Martinez Outschoorn ,&nbsp;David K. Park ,&nbsp;Norbert Podhorszki ,&nbsp;Yihui Ren ,&nbsp;Frédéric Suter ,&nbsp;Sairam Sri Vatsavai ,&nbsp;Wei Yang ,&nbsp;Shinjae Yoo ,&nbsp;Tadashi Maeno ,&nbsp;Alexei Klimentov\",\"doi\":\"10.1016/j.future.2025.108075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel approach to the joint optimization of job scheduling and data allocation in grid computing environments. We formulate this joint optimization problem as a mixed integer quadratically constrained program. To tackle the nonlinearity in the constraint, we alternatively fix a subset of decision variables and optimize the remaining ones via Mixed Integer Linear Programming (MILP). We solve the MILP problem at each iteration via an off-the-shelf MILP solver. Our experimental results show that our method significantly outperforms existing heuristic methods, employing either independent optimization or joint optimization strategies. We have also verified the generalization ability of our method over grid environments with various sizes and its high robustness to the algorithm setting.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"175 \",\"pages\":\"Article 108075\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25003693\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25003693","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种网格计算环境下作业调度和数据分配联合优化的新方法。我们将这个联合优化问题表述为一个混合整数二次约束规划。为了解决约束中的非线性,我们可以选择固定决策变量的子集,并通过混合整数线性规划(MILP)优化其余的决策变量。我们通过现成的MILP求解器在每次迭代中解决MILP问题。实验结果表明,无论采用独立优化策略还是联合优化策略,我们的方法都明显优于现有的启发式方法。我们还验证了该方法在不同大小网格环境下的泛化能力以及对算法设置的高鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative mixed integer linear programming optimization for joint job scheduling and data allocation in grid computing
This paper presents a novel approach to the joint optimization of job scheduling and data allocation in grid computing environments. We formulate this joint optimization problem as a mixed integer quadratically constrained program. To tackle the nonlinearity in the constraint, we alternatively fix a subset of decision variables and optimize the remaining ones via Mixed Integer Linear Programming (MILP). We solve the MILP problem at each iteration via an off-the-shelf MILP solver. Our experimental results show that our method significantly outperforms existing heuristic methods, employing either independent optimization or joint optimization strategies. We have also verified the generalization ability of our method over grid environments with various sizes and its high robustness to the algorithm setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信