HiPIMS高能离子束制备AlTiZrNbTaV(C)高熵金属玻璃薄膜的纳米力学性能

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xueyan Wu , Pengyun Xu , Shuai Wu , Yangbin Liu , Weiqing Yan , Lin Chen , Jiakun Wu , Xu Zhang , Bin Liao
{"title":"HiPIMS高能离子束制备AlTiZrNbTaV(C)高熵金属玻璃薄膜的纳米力学性能","authors":"Xueyan Wu ,&nbsp;Pengyun Xu ,&nbsp;Shuai Wu ,&nbsp;Yangbin Liu ,&nbsp;Weiqing Yan ,&nbsp;Lin Chen ,&nbsp;Jiakun Wu ,&nbsp;Xu Zhang ,&nbsp;Bin Liao","doi":"10.1016/j.intermet.2025.108967","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering high-entropy metallic glasses (HE-MGs) often faces a trade-off between hardness and creep resistance, which limits structural deployment. This work demonstrates how interstitial carbon doping can decouple these properties in an AlTiZrNbTaV system. While carbon doping increased the hardness of AlTiZrNbTaVC by 101.60 % to 20.32 GPa, it paradoxically degraded creep resistance. As the strain rate sensitivity (<em>m</em>) of AlTiZrNbTaVC increased more than threefold, from 0.0401 for AlTiZrNbTaV to 0.1501 for AlTiZrNbTaVC. Relaxation time spectrum analysis reveals this degradation stems from lower activation energy barriers for shear transformation zones (STZs). These results establish that the activation energy of STZs, rather than free volume, is the dominant factor controlling room temperature creep in this system. This provides a clear strategy for tailoring HE-MGs by tuning their atomic-scale heterogeneity to achieve a targeted balance between hardness and stability.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"186 ","pages":"Article 108967"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomechanical properties of AlTiZrNbTaV(C) high-entropy metallic glass films prepared by HiPIMS energetic ion beam\",\"authors\":\"Xueyan Wu ,&nbsp;Pengyun Xu ,&nbsp;Shuai Wu ,&nbsp;Yangbin Liu ,&nbsp;Weiqing Yan ,&nbsp;Lin Chen ,&nbsp;Jiakun Wu ,&nbsp;Xu Zhang ,&nbsp;Bin Liao\",\"doi\":\"10.1016/j.intermet.2025.108967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineering high-entropy metallic glasses (HE-MGs) often faces a trade-off between hardness and creep resistance, which limits structural deployment. This work demonstrates how interstitial carbon doping can decouple these properties in an AlTiZrNbTaV system. While carbon doping increased the hardness of AlTiZrNbTaVC by 101.60 % to 20.32 GPa, it paradoxically degraded creep resistance. As the strain rate sensitivity (<em>m</em>) of AlTiZrNbTaVC increased more than threefold, from 0.0401 for AlTiZrNbTaV to 0.1501 for AlTiZrNbTaVC. Relaxation time spectrum analysis reveals this degradation stems from lower activation energy barriers for shear transformation zones (STZs). These results establish that the activation energy of STZs, rather than free volume, is the dominant factor controlling room temperature creep in this system. This provides a clear strategy for tailoring HE-MGs by tuning their atomic-scale heterogeneity to achieve a targeted balance between hardness and stability.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"186 \",\"pages\":\"Article 108967\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525003322\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003322","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

工程高熵金属玻璃(he - mg)经常面临硬度和抗蠕变之间的权衡,这限制了结构的部署。这项工作证明了间隙碳掺杂如何在AlTiZrNbTaV系统中解耦这些性质。碳掺杂使AlTiZrNbTaVC的硬度提高了101.60%,达到20.32 GPa,但却降低了其抗蠕变性能。AlTiZrNbTaVC的应变速率灵敏度(m)增加了三倍以上,从AlTiZrNbTaV的0.0401增加到AlTiZrNbTaVC的0.1501。弛豫时间谱分析表明,这种退化源于剪切转变区(STZs)较低的活化能垒。这些结果表明,stz的活化能,而不是自由体积,是控制该体系室温蠕变的主要因素。这为通过调整he - mg的原子尺度非均质性来实现硬度和稳定性之间的目标平衡提供了一个明确的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanomechanical properties of AlTiZrNbTaV(C) high-entropy metallic glass films prepared by HiPIMS energetic ion beam

Nanomechanical properties of AlTiZrNbTaV(C) high-entropy metallic glass films prepared by HiPIMS energetic ion beam
Engineering high-entropy metallic glasses (HE-MGs) often faces a trade-off between hardness and creep resistance, which limits structural deployment. This work demonstrates how interstitial carbon doping can decouple these properties in an AlTiZrNbTaV system. While carbon doping increased the hardness of AlTiZrNbTaVC by 101.60 % to 20.32 GPa, it paradoxically degraded creep resistance. As the strain rate sensitivity (m) of AlTiZrNbTaVC increased more than threefold, from 0.0401 for AlTiZrNbTaV to 0.1501 for AlTiZrNbTaVC. Relaxation time spectrum analysis reveals this degradation stems from lower activation energy barriers for shear transformation zones (STZs). These results establish that the activation energy of STZs, rather than free volume, is the dominant factor controlling room temperature creep in this system. This provides a clear strategy for tailoring HE-MGs by tuning their atomic-scale heterogeneity to achieve a targeted balance between hardness and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信