{"title":"可分控制李雅普诺夫函数的存在性及其神经网络表示","authors":"Mario Sperl, Jonas Mysliwitz, Lars Grüne","doi":"10.1016/j.automatica.2025.112517","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the ability of neural networks to mitigate the curse of dimensionality in representing control Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with neural networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon tools from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control Lyapunov functions. Moreover, we present a network architecture and a training algorithm to illustrate the theoretical findings on a 10-dimensional control system.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"182 ","pages":"Article 112517"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and neural network representation of separable control Lyapunov functions\",\"authors\":\"Mario Sperl, Jonas Mysliwitz, Lars Grüne\",\"doi\":\"10.1016/j.automatica.2025.112517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the ability of neural networks to mitigate the curse of dimensionality in representing control Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with neural networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon tools from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control Lyapunov functions. Moreover, we present a network architecture and a training algorithm to illustrate the theoretical findings on a 10-dimensional control system.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"182 \",\"pages\":\"Article 112517\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825004121\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004121","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On the existence and neural network representation of separable control Lyapunov functions
In this paper, we investigate the ability of neural networks to mitigate the curse of dimensionality in representing control Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with neural networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon tools from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control Lyapunov functions. Moreover, we present a network architecture and a training algorithm to illustrate the theoretical findings on a 10-dimensional control system.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.