{"title":"在极限模型的谱上","authors":"Jeremy Beard , Marcos Mazari-Armida","doi":"10.1016/j.apal.2025.103647","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectrum of limit models assuming the existence of a nicely behaved independence notion. Under reasonable assumptions, we show that all ‘long’ limit models are isomorphic, and all ‘short’ limit models are non-isomorphic. <section><p><strong>Theorem</strong></p><div><em>Let</em> <strong>K</strong> <em>be a</em> <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><em>-tame abstract elementary class stable in</em> <span><math><mi>λ</mi><mo>≥</mo><mi>LS</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> <em>with amalgamation, joint embedding and no maximal models. Let</em> <span><math><mi>κ</mi><mo><</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>be regular. Suppose</em> <figure><img></figure> <em>is an independence relation on the models of size λ that satisfies uniqueness, extension, non-forking amalgamation, universal continuity, and</em> <span><math><mo>(</mo><mo>≥</mo><mi>κ</mi><mo>)</mo></math></span><em>-local character.</em></div><div><em>Suppose</em> <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>with</em> <span><math><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo><</mo><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><em>. Then for any</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> <em>where</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> <em>is a</em> <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>)</mo></math></span><em>-limit model over M for</em> <span><math><mi>l</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><em>,</em><span><span><img></span></span></div></section></div><div>Both implications in the conclusion have improvements. High cofinality limits are isomorphic without the <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-tameness assumption and assuming <figure><img></figure> is defined only on high cofinality limit models. Low cofinality limits are non-isomorphic without assuming non-forking amalgamation.</div><div>We show how our results can be used to study limit models in both abstract settings and in natural examples of abstract elementary classes.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 10","pages":"Article 103647"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spectrum of limit models\",\"authors\":\"Jeremy Beard , Marcos Mazari-Armida\",\"doi\":\"10.1016/j.apal.2025.103647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the spectrum of limit models assuming the existence of a nicely behaved independence notion. Under reasonable assumptions, we show that all ‘long’ limit models are isomorphic, and all ‘short’ limit models are non-isomorphic. <section><p><strong>Theorem</strong></p><div><em>Let</em> <strong>K</strong> <em>be a</em> <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><em>-tame abstract elementary class stable in</em> <span><math><mi>λ</mi><mo>≥</mo><mi>LS</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> <em>with amalgamation, joint embedding and no maximal models. Let</em> <span><math><mi>κ</mi><mo><</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>be regular. Suppose</em> <figure><img></figure> <em>is an independence relation on the models of size λ that satisfies uniqueness, extension, non-forking amalgamation, universal continuity, and</em> <span><math><mo>(</mo><mo>≥</mo><mi>κ</mi><mo>)</mo></math></span><em>-local character.</em></div><div><em>Suppose</em> <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>with</em> <span><math><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo><</mo><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><em>. Then for any</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> <em>where</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> <em>is a</em> <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>)</mo></math></span><em>-limit model over M for</em> <span><math><mi>l</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><em>,</em><span><span><img></span></span></div></section></div><div>Both implications in the conclusion have improvements. High cofinality limits are isomorphic without the <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-tameness assumption and assuming <figure><img></figure> is defined only on high cofinality limit models. Low cofinality limits are non-isomorphic without assuming non-forking amalgamation.</div><div>We show how our results can be used to study limit models in both abstract settings and in natural examples of abstract elementary classes.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 10\",\"pages\":\"Article 103647\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722500096X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722500096X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We study the spectrum of limit models assuming the existence of a nicely behaved independence notion. Under reasonable assumptions, we show that all ‘long’ limit models are isomorphic, and all ‘short’ limit models are non-isomorphic.
Theorem
LetKbe a-tame abstract elementary class stable inwith amalgamation, joint embedding and no maximal models. Letbe regular. Supposeis an independence relation on the models of size λ that satisfies uniqueness, extension, non-forking amalgamation, universal continuity, and-local character.
Supposewith. Then for anywhereis a-limit model over M for,
Both implications in the conclusion have improvements. High cofinality limits are isomorphic without the -tameness assumption and assuming is defined only on high cofinality limit models. Low cofinality limits are non-isomorphic without assuming non-forking amalgamation.
We show how our results can be used to study limit models in both abstract settings and in natural examples of abstract elementary classes.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.