含二氧化碳流体对陆地含水层水地球化学的影响

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
G.S. Lollar , M.R. Osburn , C.P. Casar , E. Rutledge , O. Warr
{"title":"含二氧化碳流体对陆地含水层水地球化学的影响","authors":"G.S. Lollar ,&nbsp;M.R. Osburn ,&nbsp;C.P. Casar ,&nbsp;E. Rutledge ,&nbsp;O. Warr","doi":"10.1016/j.gca.2025.08.009","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the formation and evolution of subsurface CO<sub>2</sub>-rich terrestrial fluids and reservoirs is key for modelling the storage of CO<sub>2</sub> in the crust, fracture-controlled fluid flow, and/or diffusive transport of fluids from deep crustal settings. However, migration and exchange mechanisms associated with CO<sub>2</sub>-rich environments remain poorly constrained. In at least one natural CO<sub>2</sub>-rich setting, a Precambrian crystalline brine component has been postulated based on δ<sup>18</sup>O and δ<sup>2</sup>H signatures which plot above the Global Meteoric Water Line. In this study we evaluate the intriguing potential role of migration and mixing of deep fluids in the shallow subsurface using a novel geochemical and microbiological framework approach which incorporates noble gas, stable isotope, and microbial diversity-based approaches. Through targeting a series of 10 springs which sample depths of up to 250 m at Saratoga Springs, NY, USA, this integrated approach finds no evidence of a deep shield brine component and reveals only migration of a principally deep crustally-derived CO<sub>2</sub> (87.2–99.3 %) with a minor mantle component. Instead, this study reveals how putative CO<sub>2</sub> dissolution-enhanced water–rock interaction coupled with ≤17 % CO<sub>2</sub>-H<sub>2</sub>O <sup>18</sup>O isotopic exchange can produce the observed aqueous geochemical composition, including the apparent shield brine signal. Microbial community data presented here also suggest distinct assemblages between shallow, freshwater and deep, saline spring fluids in line with geochemical interpretations. Crucially, our novel integrated approach highlights how migrating CO<sub>2</sub>-rich phases in subsurface environments can overprint and drive geochemical reactions in the subsurface to produce aqueous geochemistries which mimic characteristics of unrelated deep fluid systems.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"405 ","pages":"Pages 188-204"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of CO2-charged fluids on the aqueous geochemistry of terrestrial aquifers\",\"authors\":\"G.S. Lollar ,&nbsp;M.R. Osburn ,&nbsp;C.P. Casar ,&nbsp;E. Rutledge ,&nbsp;O. Warr\",\"doi\":\"10.1016/j.gca.2025.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the formation and evolution of subsurface CO<sub>2</sub>-rich terrestrial fluids and reservoirs is key for modelling the storage of CO<sub>2</sub> in the crust, fracture-controlled fluid flow, and/or diffusive transport of fluids from deep crustal settings. However, migration and exchange mechanisms associated with CO<sub>2</sub>-rich environments remain poorly constrained. In at least one natural CO<sub>2</sub>-rich setting, a Precambrian crystalline brine component has been postulated based on δ<sup>18</sup>O and δ<sup>2</sup>H signatures which plot above the Global Meteoric Water Line. In this study we evaluate the intriguing potential role of migration and mixing of deep fluids in the shallow subsurface using a novel geochemical and microbiological framework approach which incorporates noble gas, stable isotope, and microbial diversity-based approaches. Through targeting a series of 10 springs which sample depths of up to 250 m at Saratoga Springs, NY, USA, this integrated approach finds no evidence of a deep shield brine component and reveals only migration of a principally deep crustally-derived CO<sub>2</sub> (87.2–99.3 %) with a minor mantle component. Instead, this study reveals how putative CO<sub>2</sub> dissolution-enhanced water–rock interaction coupled with ≤17 % CO<sub>2</sub>-H<sub>2</sub>O <sup>18</sup>O isotopic exchange can produce the observed aqueous geochemical composition, including the apparent shield brine signal. Microbial community data presented here also suggest distinct assemblages between shallow, freshwater and deep, saline spring fluids in line with geochemical interpretations. Crucially, our novel integrated approach highlights how migrating CO<sub>2</sub>-rich phases in subsurface environments can overprint and drive geochemical reactions in the subsurface to produce aqueous geochemistries which mimic characteristics of unrelated deep fluid systems.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"405 \",\"pages\":\"Pages 188-204\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725004156\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004156","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解地下富含二氧化碳的陆地流体和储层的形成和演化是模拟地壳中二氧化碳储存、裂缝控制流体流动和/或地壳深部流体扩散输送的关键。然而,与富含二氧化碳的环境相关的迁移和交换机制仍然缺乏约束。根据全球大气水线上方的δ18O和δ2H特征,至少在一个富含二氧化碳的天然环境中,假设存在前寒武纪结晶盐水成分。在这项研究中,我们利用一种新的地球化学和微生物框架方法,结合稀有气体、稳定同位素和基于微生物多样性的方法,评估了深层流体在浅层地下迁移和混合的有趣潜在作用。通过对美国纽约州萨拉托加斯普林斯(Saratoga springs)的10个样品深度达250米的泉水进行取样,这种综合方法没有发现深层屏蔽盐水成分的证据,只揭示了主要是深层地壳来源的二氧化碳(87.2 - 99.3%)的迁移,其中有少量的地幔成分。相反,该研究揭示了假定的CO2溶解增强的水-岩相互作用以及≤17%的CO2- h2o 18O同位素交换如何产生观测到的水地球化学组成,包括明显的屏蔽盐水信号。这里提供的微生物群落数据还表明,浅层、淡水和深层、含盐泉水流体之间存在明显的组合,与地球化学解释一致。至关重要的是,我们的新综合方法强调了地下环境中迁移的富含二氧化碳的相如何叠加并驱动地下的地球化学反应,从而产生模拟不相关深层流体系统特征的水地球化学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of CO2-charged fluids on the aqueous geochemistry of terrestrial aquifers
Understanding the formation and evolution of subsurface CO2-rich terrestrial fluids and reservoirs is key for modelling the storage of CO2 in the crust, fracture-controlled fluid flow, and/or diffusive transport of fluids from deep crustal settings. However, migration and exchange mechanisms associated with CO2-rich environments remain poorly constrained. In at least one natural CO2-rich setting, a Precambrian crystalline brine component has been postulated based on δ18O and δ2H signatures which plot above the Global Meteoric Water Line. In this study we evaluate the intriguing potential role of migration and mixing of deep fluids in the shallow subsurface using a novel geochemical and microbiological framework approach which incorporates noble gas, stable isotope, and microbial diversity-based approaches. Through targeting a series of 10 springs which sample depths of up to 250 m at Saratoga Springs, NY, USA, this integrated approach finds no evidence of a deep shield brine component and reveals only migration of a principally deep crustally-derived CO2 (87.2–99.3 %) with a minor mantle component. Instead, this study reveals how putative CO2 dissolution-enhanced water–rock interaction coupled with ≤17 % CO2-H2O 18O isotopic exchange can produce the observed aqueous geochemical composition, including the apparent shield brine signal. Microbial community data presented here also suggest distinct assemblages between shallow, freshwater and deep, saline spring fluids in line with geochemical interpretations. Crucially, our novel integrated approach highlights how migrating CO2-rich phases in subsurface environments can overprint and drive geochemical reactions in the subsurface to produce aqueous geochemistries which mimic characteristics of unrelated deep fluid systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信