云母、石英、角闪洞、长石和花岗岩熔体之间的锂同位素分馏:实验方法及其对天然花岗岩系统的影响

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xu Gao , Julie Anne-Sophie Michaud , Lennart Koch , Zhenhua Zhou , Chao Zhang , Ingo Horn , Renat R. Almeev , Stefan Weyer , François Holtz
{"title":"云母、石英、角闪洞、长石和花岗岩熔体之间的锂同位素分馏:实验方法及其对天然花岗岩系统的影响","authors":"Xu Gao ,&nbsp;Julie Anne-Sophie Michaud ,&nbsp;Lennart Koch ,&nbsp;Zhenhua Zhou ,&nbsp;Chao Zhang ,&nbsp;Ingo Horn ,&nbsp;Renat R. Almeev ,&nbsp;Stefan Weyer ,&nbsp;François Holtz","doi":"10.1016/j.gca.2025.08.028","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium isotope fractionation has been extensively used to investigate magmatic and hydrothermal processes over the past decade. Thus, knowledge of Li isotope fractionation factors between minerals and melts is essential for the interpretation of Li isotope data. However, Li isotope fractionation between granitic melts and common silicate minerals has not been directly determined experimentally. To address this issue and to investigate the effect of NaCl-bearing fluids on lithium isotopic fractionation, we conducted Cl-free and Cl-bearing experiments aimed at investigating the isotope fractionation factors between silicate minerals and hydrous melt at 575 − 600 °C and 200 MPa. The run products are composed of Li-mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite (Fhlm; a Li-bearing amphibole), quartz, and melt. In Cl-free experiments, quartz is isotopically heaviest with Li isotope fractionation between quartz and melt <em>Δ</em><sub>Qz-melt</sub> = +7.0 ‰ (translating to an isotope fractionation factor α = 1.0070), followed by Li-mica with <em>Δ</em><sub>Li-mica-melt</sub> = +3.1 ‰ (α = 1.0031), K-rich feldspar with <em>Δ</em><sub>K-fsp-melt</sub> = +0.1 ‰ (α = 1.0001), ferroholmquistite with <em>Δ</em><sub>Fhlm-melt</sub> =  − 1.9 ‰ (α = 0.9981) and Na-rich feldspar with <em>Δ</em><sub>Na-fsp-melt</sub> =  − 2.7 ‰ (α = 0.9973). Our experimental data indicate that Li-mica has a higher δ<sup>7</sup>Li value than granitic melt. This observation differs from previous findings, based on bond-energy estimations, according to which micas are expected to be isotopically lighter than the coexisting melt. This discrepancy may be attributed to the coordination environment in minerals, which can be distorted, influencing Li-O bonding energies. The Li isotope fractionation factors between mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite, and melt in Cl-bearing experiments are very similar to those of Cl-free systems. This implies that the presence of NaCl-bearing fluids in a closed magmatic system has a limited effect on Li isotope fractionation during magmatic processes.</div><div>The results from a multi-stage quantitative fractionation model suggest that granitic residual melts evolve to isotopically lighter δ<sup>7</sup>Li values during crystal fractionation due to the high α<sub>mica-melt</sub> and α<sub>quartz-melt</sub> values (&gt;1). A high degree of crystal fractionation in Li-poor muscovite-bearing granitic systems could lead to a limited but still measurable Li isotope shift in residual melts (&gt;1‰), whereas shifts up to 6 ‰ are observed in Li-rich systems. Lithium-rich mica is thus more effective in causing Li isotope fractionation as compared to muscovite and biotite. Our findings imply that large lithium isotopic fractionation observed in natural granitic systems could be caused by magmatic processes, even if water–rock interaction in an open system does not occur.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"407 ","pages":"Pages 12-31"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium isotope fractionation between mica, quartz, amphibole, feldspars, and granitic melt: Experimental approach and implications for natural granitic systems\",\"authors\":\"Xu Gao ,&nbsp;Julie Anne-Sophie Michaud ,&nbsp;Lennart Koch ,&nbsp;Zhenhua Zhou ,&nbsp;Chao Zhang ,&nbsp;Ingo Horn ,&nbsp;Renat R. Almeev ,&nbsp;Stefan Weyer ,&nbsp;François Holtz\",\"doi\":\"10.1016/j.gca.2025.08.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium isotope fractionation has been extensively used to investigate magmatic and hydrothermal processes over the past decade. Thus, knowledge of Li isotope fractionation factors between minerals and melts is essential for the interpretation of Li isotope data. However, Li isotope fractionation between granitic melts and common silicate minerals has not been directly determined experimentally. To address this issue and to investigate the effect of NaCl-bearing fluids on lithium isotopic fractionation, we conducted Cl-free and Cl-bearing experiments aimed at investigating the isotope fractionation factors between silicate minerals and hydrous melt at 575 − 600 °C and 200 MPa. The run products are composed of Li-mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite (Fhlm; a Li-bearing amphibole), quartz, and melt. In Cl-free experiments, quartz is isotopically heaviest with Li isotope fractionation between quartz and melt <em>Δ</em><sub>Qz-melt</sub> = +7.0 ‰ (translating to an isotope fractionation factor α = 1.0070), followed by Li-mica with <em>Δ</em><sub>Li-mica-melt</sub> = +3.1 ‰ (α = 1.0031), K-rich feldspar with <em>Δ</em><sub>K-fsp-melt</sub> = +0.1 ‰ (α = 1.0001), ferroholmquistite with <em>Δ</em><sub>Fhlm-melt</sub> =  − 1.9 ‰ (α = 0.9981) and Na-rich feldspar with <em>Δ</em><sub>Na-fsp-melt</sub> =  − 2.7 ‰ (α = 0.9973). Our experimental data indicate that Li-mica has a higher δ<sup>7</sup>Li value than granitic melt. This observation differs from previous findings, based on bond-energy estimations, according to which micas are expected to be isotopically lighter than the coexisting melt. This discrepancy may be attributed to the coordination environment in minerals, which can be distorted, influencing Li-O bonding energies. The Li isotope fractionation factors between mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite, and melt in Cl-bearing experiments are very similar to those of Cl-free systems. This implies that the presence of NaCl-bearing fluids in a closed magmatic system has a limited effect on Li isotope fractionation during magmatic processes.</div><div>The results from a multi-stage quantitative fractionation model suggest that granitic residual melts evolve to isotopically lighter δ<sup>7</sup>Li values during crystal fractionation due to the high α<sub>mica-melt</sub> and α<sub>quartz-melt</sub> values (&gt;1). A high degree of crystal fractionation in Li-poor muscovite-bearing granitic systems could lead to a limited but still measurable Li isotope shift in residual melts (&gt;1‰), whereas shifts up to 6 ‰ are observed in Li-rich systems. Lithium-rich mica is thus more effective in causing Li isotope fractionation as compared to muscovite and biotite. Our findings imply that large lithium isotopic fractionation observed in natural granitic systems could be caused by magmatic processes, even if water–rock interaction in an open system does not occur.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"407 \",\"pages\":\"Pages 12-31\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725004338\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004338","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,锂同位素分馏被广泛应用于岩浆和热液过程的研究。因此,了解矿物和熔体之间的Li同位素分馏因子对于解释Li同位素数据至关重要。然而,花岗岩熔体与普通硅酸盐矿物之间的Li同位素分馏尚未通过实验直接测定。为解决这一问题,研究含盐流体对锂同位素分馏的影响,在575 − 600 °C和200 MPa条件下,开展了无cl和含cl实验,研究硅酸盐矿物与含水熔体之间的同位素分馏因素。矿石产品主要由锂云母、富钾长石、富钠长石、含锂角闪石(Fhlm)、石英和熔体组成。在Cl-free实验中,石英与李之间的同位素分馏isotopically最重的石英和融化ΔQz-melt = + 7.0 ‰(翻译一个同位素分馏系数α = 1.0070),其次是与ΔLi-mica Li-mica-melt = + 3.1 ‰(α = 1.0031),K-rich长石与ΔK-fsp-melt = + 0.1 ‰(α = 1.0001),与Δferroholmquistite Fhlm-melt =−  1.9‰(α = 0.9981)和Na-rich长石ΔNa-fsp-melt =−  2.7‰(α = 0.9973)。实验数据表明,锂云母的δ7Li值高于花岗岩熔体。这一观察结果与先前基于键能估计的发现不同,根据键能估计,云母在同位素上比共存的熔体轻。这种差异可能是由于矿物中的配位环境可能被扭曲,从而影响Li-O键能。含cl实验中云母、富k长石、富na长石、铁长辉石和熔体之间的Li同位素分馏因子与无cl体系非常相似。这表明封闭岩浆系统中含盐流体的存在对岩浆过程中Li同位素分馏的影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium isotope fractionation between mica, quartz, amphibole, feldspars, and granitic melt: Experimental approach and implications for natural granitic systems
Lithium isotope fractionation has been extensively used to investigate magmatic and hydrothermal processes over the past decade. Thus, knowledge of Li isotope fractionation factors between minerals and melts is essential for the interpretation of Li isotope data. However, Li isotope fractionation between granitic melts and common silicate minerals has not been directly determined experimentally. To address this issue and to investigate the effect of NaCl-bearing fluids on lithium isotopic fractionation, we conducted Cl-free and Cl-bearing experiments aimed at investigating the isotope fractionation factors between silicate minerals and hydrous melt at 575 − 600 °C and 200 MPa. The run products are composed of Li-mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite (Fhlm; a Li-bearing amphibole), quartz, and melt. In Cl-free experiments, quartz is isotopically heaviest with Li isotope fractionation between quartz and melt ΔQz-melt = +7.0 ‰ (translating to an isotope fractionation factor α = 1.0070), followed by Li-mica with ΔLi-mica-melt = +3.1 ‰ (α = 1.0031), K-rich feldspar with ΔK-fsp-melt = +0.1 ‰ (α = 1.0001), ferroholmquistite with ΔFhlm-melt =  − 1.9 ‰ (α = 0.9981) and Na-rich feldspar with ΔNa-fsp-melt =  − 2.7 ‰ (α = 0.9973). Our experimental data indicate that Li-mica has a higher δ7Li value than granitic melt. This observation differs from previous findings, based on bond-energy estimations, according to which micas are expected to be isotopically lighter than the coexisting melt. This discrepancy may be attributed to the coordination environment in minerals, which can be distorted, influencing Li-O bonding energies. The Li isotope fractionation factors between mica, K-rich feldspar, Na-rich feldspar, ferroholmquistite, and melt in Cl-bearing experiments are very similar to those of Cl-free systems. This implies that the presence of NaCl-bearing fluids in a closed magmatic system has a limited effect on Li isotope fractionation during magmatic processes.
The results from a multi-stage quantitative fractionation model suggest that granitic residual melts evolve to isotopically lighter δ7Li values during crystal fractionation due to the high αmica-melt and αquartz-melt values (>1). A high degree of crystal fractionation in Li-poor muscovite-bearing granitic systems could lead to a limited but still measurable Li isotope shift in residual melts (>1‰), whereas shifts up to 6 ‰ are observed in Li-rich systems. Lithium-rich mica is thus more effective in causing Li isotope fractionation as compared to muscovite and biotite. Our findings imply that large lithium isotopic fractionation observed in natural granitic systems could be caused by magmatic processes, even if water–rock interaction in an open system does not occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信