{"title":"教育领域论证挖掘的综合研究:技术、应用和未来方向","authors":"David Eduardo Pereira, Daniela Thuaslar Simão Gomes, Larissa Lucena Vasconcelos, Claudio Elizio Calazans Campelo","doi":"10.1002/widm.70041","DOIUrl":null,"url":null,"abstract":"The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Application Areas > Education and Learning</jats:list-item> <jats:list-item>Technologies > Artificial Intelligence</jats:list-item> <jats:list-item>Technologies > Machine Learning</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey of Argument Mining in the Educational Domain: Techniques, Applications, and Future Directions\",\"authors\":\"David Eduardo Pereira, Daniela Thuaslar Simão Gomes, Larissa Lucena Vasconcelos, Claudio Elizio Calazans Campelo\",\"doi\":\"10.1002/widm.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: <jats:list list-type=\\\"simple\\\"> <jats:list-item>Application Areas > Education and Learning</jats:list-item> <jats:list-item>Technologies > Artificial Intelligence</jats:list-item> <jats:list-item>Technologies > Machine Learning</jats:list-item> </jats:list>\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.70041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Survey of Argument Mining in the Educational Domain: Techniques, Applications, and Future Directions
The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: Application Areas > Education and LearningTechnologies > Artificial IntelligenceTechnologies > Machine Learning