教育领域论证挖掘的综合研究:技术、应用和未来方向

David Eduardo Pereira, Daniela Thuaslar Simão Gomes, Larissa Lucena Vasconcelos, Claudio Elizio Calazans Campelo
{"title":"教育领域论证挖掘的综合研究:技术、应用和未来方向","authors":"David Eduardo Pereira, Daniela Thuaslar Simão Gomes, Larissa Lucena Vasconcelos, Claudio Elizio Calazans Campelo","doi":"10.1002/widm.70041","DOIUrl":null,"url":null,"abstract":"The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Application Areas &gt; Education and Learning</jats:list-item> <jats:list-item>Technologies &gt; Artificial Intelligence</jats:list-item> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey of Argument Mining in the Educational Domain: Techniques, Applications, and Future Directions\",\"authors\":\"David Eduardo Pereira, Daniela Thuaslar Simão Gomes, Larissa Lucena Vasconcelos, Claudio Elizio Calazans Campelo\",\"doi\":\"10.1002/widm.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: <jats:list list-type=\\\"simple\\\"> <jats:list-item>Application Areas &gt; Education and Learning</jats:list-item> <jats:list-item>Technologies &gt; Artificial Intelligence</jats:list-item> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> </jats:list>\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.70041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

论点挖掘(AM)在教育领域的应用是一种识别表达论点的文本结构的工具。AM可以帮助评估学生作业的质量,对他们的观点产生见解,并了解他们对某些主题的立场。本文研究了AM在教育中的各个方面,包括技术、模型、方法、数据表示、语言资源和目标工件。研究结果表明,AM可以提高学习和教学过程。然而,该研究强调了文献上的差距,特别是在探索辩论等教育文物方面,以及对英语以外语言的AM研究的缺乏。本文呼吁进一步研究如何通过AM在教育领域改善教育成果。本文分类如下:应用领域;教育与学习技术;人工智能技术;机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Survey of Argument Mining in the Educational Domain: Techniques, Applications, and Future Directions
The application of argument mining (AM) in the educational domain is a tool for identifying text structures that express an argument. AM can help evaluate the quality of students' assignments, generate insights into their perspectives, and understand their stance on certain topics. This article examines various aspects of AM in education, including techniques, models, approaches, data representation, language resources, and target artifacts. The findings suggest that AM can enhance learning and teaching processes. However, the study highlights gaps in the literature, particularly in exploring educational artifacts like debates and a lack of research on AM in languages other than English. This paper calls for further research to improve educational outcomes through AM in the educational domain.This article is categorized under: Application Areas > Education and Learning Technologies > Artificial Intelligence Technologies > Machine Learning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信