Michel N. Kanaan , Charbel Y. Karam , Luke S. Kennedy , Chantal A. Pileggi , Lauren Hamilton , Miroslava Cuperlovic-Culf , Mary-Ellen Harper
{"title":"受损的xct介导的胱氨酸摄取驱动丝氨酸和脯氨酸代谢重编程和骨骼肌细胞线粒体裂变","authors":"Michel N. Kanaan , Charbel Y. Karam , Luke S. Kennedy , Chantal A. Pileggi , Lauren Hamilton , Miroslava Cuperlovic-Culf , Mary-Ellen Harper","doi":"10.1016/j.redox.2025.103839","DOIUrl":null,"url":null,"abstract":"<div><div>Muscle satellite cell (MuSC) proliferation is tightly regulated by redox homeostasis and nutrient availability, which are often disrupted in muscular pathologies. Beyond its role in maintaining cellular redox homeostasis, this study identified a key metabolic role for cystine/glutamate antiporter xCT in proliferating MuSCs. We investigated the impact of impaired xCT-mediated cystine import in Slc7a11<sup>sut/sut</sup> MuSCs isolated from mice that harbor a mutation in the <em>SLC7A11</em> gene, which encodes xCT. We used complementary approaches to study how disrupted cystine import affects glutathione (GSH) redox, cellular bioenergetics, mitochondrial dynamics, and metabolism. Oxygen consumption rates of Slc7a11<sup>sut/sut</sup> MuSCs were lower, indicative of compromised mitochondrial oxidative capacity. This was accompanied by a fragmented mitochondrial network associated with OPA1 cleavage and redox-sensitive DRP1 oligomerization. Metabolomic profiling revealed a distinct metabolic signature in Slc7a11<sup>sut/sut</sup> MuSCs, manifested by major differences in BCAAs, pyrimidines, cysteine, methionine, and GSH. Despite lower overall bioenergetic flux, stable-isotope tracing analyses (SITA) showed that xCT deficiency increased glucose uptake, channeling glucose-derived carbons into <em>de novo</em> serine biosynthesis to fuel cysteine production via the transsulfuration pathway, partially compensating for disrupted GSH redox. Furthermore, xCT deficiency triggered upregulated pyrroline-5-carboxylate synthase (P5CS)-mediated proline reductive biosynthesis. By directing glutamate into proline synthesis, MuSCs apparently downregulate oxidative phosphorylation (OXPHOS) and regulate intracellular glutamate levels in response to impaired cystine/glutamate antiporter function. Our findings highlight the roles of xCT in regulating redox balance and metabolic reprogramming in proliferating MuSCs, providing insights that may inform therapeutic strategies for muscular and redox-related pathologies.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"86 ","pages":"Article 103839"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired xCT-mediated cystine uptake drives serine and proline metabolic reprogramming and mitochondrial fission in skeletal muscle cells\",\"authors\":\"Michel N. Kanaan , Charbel Y. Karam , Luke S. Kennedy , Chantal A. Pileggi , Lauren Hamilton , Miroslava Cuperlovic-Culf , Mary-Ellen Harper\",\"doi\":\"10.1016/j.redox.2025.103839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Muscle satellite cell (MuSC) proliferation is tightly regulated by redox homeostasis and nutrient availability, which are often disrupted in muscular pathologies. Beyond its role in maintaining cellular redox homeostasis, this study identified a key metabolic role for cystine/glutamate antiporter xCT in proliferating MuSCs. We investigated the impact of impaired xCT-mediated cystine import in Slc7a11<sup>sut/sut</sup> MuSCs isolated from mice that harbor a mutation in the <em>SLC7A11</em> gene, which encodes xCT. We used complementary approaches to study how disrupted cystine import affects glutathione (GSH) redox, cellular bioenergetics, mitochondrial dynamics, and metabolism. Oxygen consumption rates of Slc7a11<sup>sut/sut</sup> MuSCs were lower, indicative of compromised mitochondrial oxidative capacity. This was accompanied by a fragmented mitochondrial network associated with OPA1 cleavage and redox-sensitive DRP1 oligomerization. Metabolomic profiling revealed a distinct metabolic signature in Slc7a11<sup>sut/sut</sup> MuSCs, manifested by major differences in BCAAs, pyrimidines, cysteine, methionine, and GSH. Despite lower overall bioenergetic flux, stable-isotope tracing analyses (SITA) showed that xCT deficiency increased glucose uptake, channeling glucose-derived carbons into <em>de novo</em> serine biosynthesis to fuel cysteine production via the transsulfuration pathway, partially compensating for disrupted GSH redox. Furthermore, xCT deficiency triggered upregulated pyrroline-5-carboxylate synthase (P5CS)-mediated proline reductive biosynthesis. By directing glutamate into proline synthesis, MuSCs apparently downregulate oxidative phosphorylation (OXPHOS) and regulate intracellular glutamate levels in response to impaired cystine/glutamate antiporter function. Our findings highlight the roles of xCT in regulating redox balance and metabolic reprogramming in proliferating MuSCs, providing insights that may inform therapeutic strategies for muscular and redox-related pathologies.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"86 \",\"pages\":\"Article 103839\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725003520\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003520","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impaired xCT-mediated cystine uptake drives serine and proline metabolic reprogramming and mitochondrial fission in skeletal muscle cells
Muscle satellite cell (MuSC) proliferation is tightly regulated by redox homeostasis and nutrient availability, which are often disrupted in muscular pathologies. Beyond its role in maintaining cellular redox homeostasis, this study identified a key metabolic role for cystine/glutamate antiporter xCT in proliferating MuSCs. We investigated the impact of impaired xCT-mediated cystine import in Slc7a11sut/sut MuSCs isolated from mice that harbor a mutation in the SLC7A11 gene, which encodes xCT. We used complementary approaches to study how disrupted cystine import affects glutathione (GSH) redox, cellular bioenergetics, mitochondrial dynamics, and metabolism. Oxygen consumption rates of Slc7a11sut/sut MuSCs were lower, indicative of compromised mitochondrial oxidative capacity. This was accompanied by a fragmented mitochondrial network associated with OPA1 cleavage and redox-sensitive DRP1 oligomerization. Metabolomic profiling revealed a distinct metabolic signature in Slc7a11sut/sut MuSCs, manifested by major differences in BCAAs, pyrimidines, cysteine, methionine, and GSH. Despite lower overall bioenergetic flux, stable-isotope tracing analyses (SITA) showed that xCT deficiency increased glucose uptake, channeling glucose-derived carbons into de novo serine biosynthesis to fuel cysteine production via the transsulfuration pathway, partially compensating for disrupted GSH redox. Furthermore, xCT deficiency triggered upregulated pyrroline-5-carboxylate synthase (P5CS)-mediated proline reductive biosynthesis. By directing glutamate into proline synthesis, MuSCs apparently downregulate oxidative phosphorylation (OXPHOS) and regulate intracellular glutamate levels in response to impaired cystine/glutamate antiporter function. Our findings highlight the roles of xCT in regulating redox balance and metabolic reprogramming in proliferating MuSCs, providing insights that may inform therapeutic strategies for muscular and redox-related pathologies.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.